- Munir, N., Hasnain, M., Roessner, U. & Abideen, Z. (2022). Strategies in improving plant salinity resistance and use of salinity resistant plants for economic sustainability. Environmental Science & Technology, 52(12), 2150-2196.
- Pessarakli, M. (1999). Handbook of Plant and Crop Stress. Marcel Dekker Incorporation. New York.1254p.
- Ouhibi, C., Attia, H., Rebah, F., Msilini, N., Chebbi, M., Urban, L. & Lachaal, M. (2014). Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiology and Biochemistry, 83, 126–133.
4.Yang, Y. & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist, 217(2), 523–539.
- Ashraf, M. & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica. 51(2), 163–190.
- Viera Santos, C. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103(1), 93-99.
- Turan, M. A., Elkiram, A. H., Taban, A. N. & Tban, S. (2009). Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations in maize plant. African Journal of Agricultural Research, 4(9), 893-897.
- Bernstein, L. (1963). Osmotic adjustment of plant to saline media. Dynamic phase. American Journal of Botany, 50 (4), 360-37
- Sheteiwy, M. S., Shao, H., Qi, W., Daly, P., Sharma, A., Shaghaleh, H., Hamoud, Y. A., El‐Esawi, M. A., Pan, R., Wan, Q. & Lu, H. (2021). Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. Journal of the Science of Food and Agriculture, 101(5), 2027-2041.
- Masoudi, B. (2021). Screening of Soybean Genotypes at Seedling Stage under Salinity Stress.
Journal of Crop Breeding, 13(38), 124-137. [In Persian]
- Dadashi, M. R., MajidHeravan. I., Soltani, A. & Noorinia, A. A. (2007). Evaluation of different genotypes of barley to salinity salt stress. The Journal of Agricultural Science, 13(1), 181-190. [In Persian]
- Amirjani, M. R. (2010). Effect of NaCl on Some Physiological Parameters of Rice. EJBS, 3(1), 06-16.
- Munns, R. & Tester, M. (2008). Mechanism of Salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
- Basara, A. S., & Barsara, R. K. (1997). Mechanisms of Environmental Stress Resistance in Plants. Harwood Academic Publishers. 83-111.
- Summart, J., Thanonkeo, P., Panichajakul, S., Prathepha, P. & McManus, M. T. (2010). Effect of salt stress on growth, inorganic ion and proline accumulation in Thai aromatic rice, Khao Dawk Mali 105, callus culture. African Journal of Biotechnology, 9(2), 145-152.
- Chen, Z., Zhu, M., Newman, I., Mendham, M., Zhang, G. & Shabala, S. (2007). Potassium and sodium relations in salinized barley tissues as a basis of differential salt tolerance. Functional Plant Biology, 34(2), 150–162.
- Ashraf, M. (2004). Some important physiological criteria for salt tolerance in plants. Functional Plant Ecology, 199(5), 361-376.
- Hardarson, G. & Danson, S. K. A. (1993). Methods for measuring biological nitrogen fixation in grain legumes. Plant and Soil, 152(1), 19-23.
- Bates, L. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
- Graham, J., Bristol, A., Yong, E. M., Wyn Jones, R. G. & Kashour. G. (1990). salt tolerance in the triticeae K. Na discrimination in barley. Journal of Experimental Botany, 41(9), 1095-1101.
- Schachtman, D. P. & Munns, R. 1992. Sodium accumulation in leaves of Triticum species that differ in salt tolerance. Australian journal of plant physiology, 19, 331-340.
- Deinlein, U., Stephan, A., Horie, T., Luo, W., Xu, G. & Schroeder, J. I. (2014). Plant salt tolerance mechanisms. Trends in Plant Science, 14(6), 1-9.
- Bohnert, H. J., Nelson, D. E. & Jensen, R. G. (1999). Adaptation to environmental stresses. Plant Cell, 7(7), 1099-1111.
24.Heydari, M., Nadian, H., Bakhshandeh, A., AlamiSaeid, K.h. & Fathi, G.H. (2007). Effect of salinty and nitrogen rates on osmotic adjustment and accumulation of mineral nutrients in wheat. Journal of Agricultural Science and Technology, 11(40), 193-21. (In Persian)
- Atlassi Pak, V. (2018). Evaluation of Sodium Accumulation in Leaves of Wheat (Triticum Aestivum L.) Cultivars Differing in Salt Tolerance. Plant Productions, 41(1), 43-56. [In Persian]
- Ashraf, M. & Foolad, M.R.( 2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59 (2), 206-216.
- Greenway, H., & Munns, R. (1980). Mechanism of salt tolerance in nonhalphytes. Annual Review of Plant Biology, 31(1), 149-190.
- Karimi, R. (2017). Potassium-induced freezing tolerance is associated with endogenous abscisic acid, polyamines and soluble sugars changes in grapevine. Scientia Horticulturae, 215, 184-194.
- Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168(4), 521-530
- Aqueel Ahmad, M. S., Javed, F. & Ashraf, M. (2007). Iso osmotic effect of NaCl and PEG on growth, cations and free proline accumulation in callus tissue of two indica rice (Oryza sativa L.) genotypes. Plant Growth Regulation, 53, 53-63.
- Kazemeini, S., Alborzei Hagighi, M. & Pirasteh-Anosheh, H. (2016). Evaluating salinity tolerance at different growth stages in rapeseed (Brassica napus) cv. Environmental Stresses in Crop Sciences, 9(2), 185-193. [In Persian]
- Momeni, N., Arvin, M. J., Khagoei, G., Keramat, B., & Daneshmand, F. (2013). Effects of sodium chloride and salicylic acid on some photosynthetic parameters and mineral nutrition in maize (Zea mays L.) plants. Journal of Plant Research, (5)15, 15-30. [In Persian]
- Talwar, H. S., Kumari, A. Surwenshi, A. & Seetharama, N. (2011). Sodium: potassium ratio in foliage as an indicator of tolerance to chloride-dominant soil salinity in oat (Avena sativa). The Indian Journal of Agricultural Sciences, 81(5), 481-484.
- Bandehhagh, A., Kazemi, H., Valizadeh, M., & Javanshir, A. (2004). Salt tolerance of spring wheat (Triticum aestivum L.) cultivars during vegetative and reproductive growth. Iranian, The Journal of Agricultural Science, 35(1), 61-71. [In Persian]
- Iqra, L., Rashid, M. S., Ali, Q., Latif, I. & Mailk, A. (2020). Evaluation for Na+/K+ ratio under salt stress condition in wheat. Life Science Journal, 17(7), 43-50.
- Assaha, D. V., Ueda, A., Saneoka, H., Al-Yahyai, R. & Yaish, M. W. (2017). The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Frontiers in Physiology, 8, 1–19.
- Shakib Aylar, A., Farzaneh, S., Moharramnejad, S., Seyed Sharifi, R. & Hasanzadeh, M. (2021). Response of Some Physiological Traits in Maize Cultivars to Salinity Stress. Journal of crops breeding, 13(40), 173-180. [In Persian]
- Beyzavi, F., Baghizadeh, A., Mirzaei, S., Maleki, M. & Mazafari, H. (2020). Investigation of some Biochemical Traits of Tolerant and Sensitive Wheat Cultivars (Triticum Bioticum) under Salinity Stress. Journal of crops breeding, 12(36), 216-234. [In Persian]
- Kózminska, A., Wiszniewska, A., Hanus-Fajerska, E., Boscaiu, M., Al Hassan, M., Halecki, W. & Vicente, O. (2019). Identification of salt and drought biochemical stress markers in several Silene vulgaris populations. Sustainability, 11(3), 800-823.
- Bacha, H., Tekaya, M., Drine, S., Guasami, F., Touil, L., Enneb, H., Triki, T., Cheour, F. & Ferchichi, A. (2017). Impact of salt stress on morpho-physiological and biochemical parameters of Solanum lycopersicum cv. Microtom leaves. South African Journal of Botany, 108, 364–369.
- Rana, V., Ram, S. & Nehra, K. (2017). Proline biosynthesis and its role in abiotic stress. International Journal of Agricultural Research, 6(3), 2319-2473.
- Al Hassan, M., Pacurar, A., López-Gresa, M.P., Donat-Torres, M., Llinares, J. Boscaiu, M. & Vicente, O. (2016). Effects of salt stress on three ecologically distinct Plant ago species. PLoS One, 11, e0160236.
- Abdel Aziz, M. N., Xuan, T. D., Mekawy, A. M. M., Wang, H. & Khanh, T. D. (2018). Relationship of salinity tolerance to Na+ exclusion, proline accumulation and antioxidant enzyme activity in rice seedlings. Agriculture, 8(11), 166-178.
- Arteaga, S., Yabor, L., Díez, M. J., Prohens, J., Boscaiu, M. & Vicente, O., (2020). The use of proline in screening for tolerance to drought and salinity in common bean (Phaseolus vulgaris L.) genotypes. Agronomy, 10(6), 817-834.
- Sehrawat, N., Jaiwal, P. K., Yadav, M., Bhat, K. V. & Sairam, R. K. (2013). Salinity stress restraining mungbean (Vigna radiata (L.) production: gateway for genetic improvement. Journal of Agronomy and Crop Science, 6(9), 505- 600.
- Tu, J. C. (1981). Effect of salinity on Rhizobium-root hair interaction, nodulation and growth of soybean. Canadian Journal of Plant Science, 61(2), 231–239.
- Dhugga, K. S., Wanes, J. G. & Leonard, L. (1988). Nitrate absorbtion by corn roots. Inhibition by phenylglyoxal. Plant Physiology, 86(3), 759-763.
- Sunita, K., Srivastava, M., Abbasi, P. & Muruganandam, M. (2019). Impact of Salinity on Growth and N 2-Fixation in Melilotus indicus. Journal of Plant Science and Reserch, 35(1), 109-119.
- Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 63(4), 968-989.
- Fazaeli, A. & Besharati, H. (2012). Effect of salinity on some growth indices and total protein content of alfalfa genotypes inoculated with Sinorhizobium meliloti strains under greenhouse conditions. Journal of Science and Technology of Greenhouse Culture, 3(1), 25-38. [In Persian]
- Sepehri, M., Jahandideh mahjen abadi, V., Asadi rahmani, H. & Sadeghi hosni, A. (2015). Influence of Rhizobium leguminosarum b.v. phaseoli bacteria on growth, activity of antioxidant enzymes and nutrient uptake of common bean (Phaseolus vulgaris) under salinity stress. Journal of Soil Management Sustainable Production, 5(2), 165-180.
- Tattini, M., Lombardini, L. & Gucci, R. (1997). The effect of NaCl stress and relief on gas exchange properties of two olive cultivars differing in tolerance to salinity. Plant and Soil, 197(1), 87-93.
- Wood, A. J. (1999). Comparison of salt-induced osmotic adjustment and trigonelline accumulation in two soybean cultivars. Biologia Plantarum, 42(3), 389-394.
- Reginato, M., Travaglia, C., Reinoso, H., Garello, F. & Luna, V. (2016). Salt mixtures induce anatomical modifications in the halophyte Prosopis strombulifera (Fabaceae: Mimosoideae). Flora, 218, 75-85.
- Bybordi, A. 2012. Study effect of salinity on some physiologic and morphologic properties of two grape cultivars. Life Science Journal, 9(4), 1092-1101.
- Moravveji, S., Zamani, G., Kafi, M., & Alizadeh, Z. (2017). Effect of different salinity levels on yield and yield components of spring canola cultivars (Brassica napus L.) and Indian mustard (B. juncea L.). Environmental Stresses in Crop Sciences, 10(3), 445-457. [In Persian]
- Noroozi, M., Chavoshie, E. & Ghajar Sepanlou, M. (2022). Effect of Irrigation Water Salinity on Relative Yield and Some Morphological and Physiological Characteristics of Sorghum. Journal of Water Research in Agriculture, 36(1), 55-73. [In Persian]