مطالعه پایداری عملکرد شکر سفید ارقام چغندرقند (Beta vulgaris L.) در کشت زمستانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار ، مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند- سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 دانشیار، بخش چغندرقند، مرکز تحقیقات کشاورزی و منابع طبیعی خراسان رضوی- مشهد مرکز تحقیقات طرق

3 استادیار، مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند- سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

4 محقق بخش تحقیقات چغندرقند، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

5 کارشناس ارشد مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

6 مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

سابقه و هدف: آب مهم‌ترین عامل محدودکننده زراعت چغندرقند در ایران است. زراعت پاییزه چغندرقند در اقلیم‌های خشکی مانند ایران در مقایسه با کشت بهاره، میزان آب کمتری مصرف نموده و می‌تواند گزینه مناسب‌تری برای بهره‌گیری از بارندگی‌های پاییزه و زمستانه و مقابله با بحران کمبود آب باشد. به نظر می‌رسد انتقال زراعت چغندرقند از بهاره به پاییزه باعث خواهد شد که علاوه بر مصرف آب بسیار کمتر در این نوع کشت و نیز افزایش کارایی مصرف آب، برای کشاورزان صرفه اقتصادی قابل توجهی داشته و به‌سرعت رواج یابد؛ اما کشت پاییزه در بسیاری از مناطق با مشکلاتی مواجه است. از این‌رو، پژوهش حاضر با هدف بررسی تأثیر کشت زمستانه بر خصوصیات کمی و کیفی چغندرقند اجرا شد.
مواد و روش‌ها: آزمایش در قالب طرح پایه بلوک‌های کامل تصادفی با چهار تکرار روی 11 رقم زودرس چغندرقند در مناطق جوین، تربت‌جام و مغان به ترتیب به مدت یک (1399-1398)، دو (1399-1398 و 1400-1399) و سه (1398-1397، 1399-1398 و 1400-1399) سال زراعی انجام گردید. به‌منظور مطالعه تأثیر برهمکنش ژنوتیپ- محیط و شناسایی ژنوتیپ‌های با پایداری عمومی و خصوصی، از روش‌های تجزیه پایداری AMMI و MTSI استفاده شد.
یافته‌ها: نتایج تجزیه واریانس مرکب بر اساس مدل AMMI مؤید تأثیر معنی‌دار اثرات اصلی محیط و رقم در سطح احتمال یک درصد بود. برهمکنش میان آن‌ها نیز تفاوت آماری معنی‌داری در سطح احتمال یک درصد نشان داد. تجزیه اثرات ضرب‌پذیر مدل AMMI مؤید آن بود که دو مؤلفه اول در سطح احتمال یک درصد معنی‌دار هستند و مجموعاً 20/75 درصد از تغییرات برهمکنش ژنوتیپ- محیط را تبیین می‌نمایند. بای‌پلات حاصل از میانگین عملکرد و اولین مؤلفه اصلی برهمکنش ژنوتیپ- محیط مؤید برتری ارقام FDIR19B4028 و مودکس، به دلیل دارا بودن عملکرد شکر سفید و پایداری بالا بود. بر اساس نتایج بای‌پلات حاصل از دو مؤلفه اول، میان ارقام با محیط‌ مغان در سال‌های 1400 و 1399 سازگاری خصوصی قابل ملاحظه‌ای وجود نداشت، اما در مقابل بین محیط مغان در سال 1398 با رقم مودکس، تربت‌جام در سال‌های 1400 و 1399 به ترتیب با ارقام آسیا و SVZD2019 و جوین با رقم SVZC2019 سازگاری خصوصی بسیار بالایی مشاهده شد. رقم کادموس از سازگاری عمومی برخوردار بود. بر اساس نتایج شاخص MTSI، رقم SVZD2019 در رتبه نخست و ارقام FDIR19B4028، دراووس و FDIR19B3021 در رتبه‌های بعدی ایده‌آل‌ترین ارقام پایدار از نظر تمامی صفات مورد مطالعه قرار گرفتند.
نتیجه‌گیری: به‌طور کلی چهار رقم SVZD2019، FDIR19B4028، دراووس و FDIR19B3021 برای کشت زمستانه توصیه می‌شود. نتایج به‌دست‌آمده مبین آن است که توسعه کشت زمستانه چغندرقند مسلماً یکی از راهکار‌های مهم برای استفاده از بارندگی‌های فصلی و صرفه‌جویی در مصرف آب می‌باشد، در این رابطه در کشت زمستانه چغندرقند، انتخاب رقم مناسب نقش بسیار مهمی دارد، به‌طوری که بر اغلب ویژگی‌های کمی و کیفی تأثیر می‌گذارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of white sugar yield stability of sugar beet (Beta vulgaris L.) cultivars in winter sowing

نویسندگان [English]

  • Dariush Taleghani 1
  • masoud ahmadi 2
  • Mostafa Hosseinpour 3
  • Hassan Hamidi 4
  • Reza Nemati 5
  • Ali Saremirad 6
1 Associate Professor of Sugar Beet Seed Institute (SBSI) - Agricultural Research Education and Extension, Karaj, Iran
2 Associate Professor., Dept. of Sugar Beet, Agricultural and Natural Resources Research Center of Razavi Khorasan, Mashhad, Iran
3 Assistant Professor of Sugar Beet Seed Institute (SBSI)- Agricultural Research Education and Extension, Karaj, Iran.
4 Researcher, Sugar Beet Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran.
5 Master Expert of Sugar Beet Seed Institute (SBSI)- Agricultural Research Education and Extension, Karaj, Iran
6 Sugar Beet Seed Institute (SBSI)- Agricultural Research Education and Extension, Karaj, Iran.
چکیده [English]

Background and objectives: Water is the most significant limiting factor for sugar beet cultivation in Iran. Autumn sowing of sugar beet in dry climates like Iran consumes less water compared to spring sowing and can be a more suitable option for taking advantage of autumn and winter rains and dealing with the water shortage crisis. It seems that the transfer of sugar beet cultivation from spring to autumn will cause that in addition to consuming much less water in this type of cultivation and increasing the efficiency of water consumption, it will have a significant economic benefit for farmers and will spread quickly. But autumn sowing is facing problems in many areas. Therefore, the current research was conducted to investigate the effect of winter sowing on the quantitative and qualitative characteristics of sugar beet.
Materials and Methods: The experiment was conducted in the form of a randomized complete block design with four replications on 11 early maturity sugar beet cultivars at Jovein, Torbat-Jam, and Moghan agricultural research stations for one, two, and three crop years, respectively. In order to study the effect of genotype-environment interaction and to identify genotypes with general and specific stability, AMMI and MTSI stability analysis methods were used.
Results: The combined analysis of variance results based on the AMMI model confirmed the significant effect of the main effects of environment and cultivar at the one percent probability level. The interaction between them also showed a statistically significant difference at the one percent probability level. The analysis of the multiplicative effects of the AMMI model confirmed that the first two components are significant at the one percent probability level and together explain 75.20% of the interaction variation. The bi-plot obtained from the mean white sugar yield and the first principal component of the interaction confirmed the superiority of FDIR19B4028 and Modex cultivars due to their high white sugar yield and stability. According to the bi-plot results obtained from the first two components, there was no appreciable specific adaptability between cultivars with Moghan environment in 2021 and 2020, but on the other hand, a very high specific adaptability was observed between Moghan environment in 2019 with Modex cultivar, Torbat-Jam in 2021 and 2020 respectively with Asia and SVZD2019 cultivars, and Jovein with SVZC2019 cultivar. Cadmus cultivar has general adaptability because it is somewhat close to the origin of the coordinates. Based on the results of the MTSI index, SVZD2019 was ranked first, and FDIR19B4028, Dravus, and FDIR19B3021 were placed in the next ranks of the most ideal sustainable cultivars in terms of all studied traits.
Conclusion: In general, four cultivars of SVZD2019, FDIR19B4028, Dravus and FDIR19B3021 are recommended for winter cultivation. The obtained results show that the development of winter sugar beet sowing is certainly one of the important strategies for using seasonal rains and saving water consumption; In this regard, in the winter sowing of sugar beet, choosing the suitable cultivar plays a very vital role, so that it affects most of the quantitative and qualitative characteristics.

کلیدواژه‌ها [English]

  • Adaptability
  • Autumn sowing
  • Interaction
  • Water
  1. Żarski, J., Kuśmierek-Tomaszewska, R. & Dudek, S. (2020). Impact of irrigation and fertigation on the yield and quality of sugar beet (Beta vulgaris ) in a moderate climate. J. Agron. 10: 2. 150-166.
  2. Monteiro, F., Frese, L., Castro, S., Duarte, M.C., Paulo, S., Loureiro, J. & Romeiras, M.M. (2018). Genetic and genomic tools to asssist sugar beet improvement: the value of the crop wild relatives. Front. Plant Sci. 9: 74-85.
  3. Ribeiro, I.C., Pinheiro, C., Ribeiro, C.M., Veloso, M.M., Simoes-Costa, M., Evaristo, I., Paulo, O.S. & Ricardo, C.P. (2016). Genetic diversity and physiological performance of Portuguese wild beet (Beta vulgaris spp. maritima) from three contrasting habitats. Front. Plant Sci. 7: 1. 1293.
  4. Tomaszewska, J., Bieliński, D., Binczarski, M., Berlowska, J., Dziugan, P., Piotrowski, J., Stanishevsky, A. & Witońska, I. (2018). Products of sugar beet processing as raw materials for chemicals and biodegradable polymers. RSC Adv. 8: 6. 3161-3177.
  5. Lammens, T., Franssen, M., Scott, E. & Sanders, J. (2012). Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals. Biomass Bioenergy. 44: 168-181.
  6. Tenorio, A.T., Schreuders, F., Zisopoulos, F., Boom, R. & Van der Goot, A. (2017). Processing concepts for the use of green leaves as raw materials for the food industry. J. Clean. Prod. 164: 736-748.
  7. Akyüz, A. & Ersus, S. (2021). Optimization of enzyme assisted extraction of protein from the sugar beet (Beta vulgaris) leaves for alternative plant protein concentrate production. Food Chem. 335: 127673.
  8. Kiskini, A., Vissers, A., Vincken, J.-P., Gruppen, H. & Wierenga, P.A. (2016). Effect of plant age on the quantity and quality of proteins extracted from sugar beet (Beta vulgaris) leaves. Food Chem. 64: 44. 8305-8314.
  9. Taleghani, D., Moharamzadeh, M., Hemayati, S.S., Mohammadian, R. & Farahmand, R. (2011). Effect of sowing and harvest time on yield of autumn-sown sugar beet in Moghan region in Iran. Seed and Plant. 27: 2. 355-371. (In persian)
  10. Hoffmann, C.M. & Kluge-Severin, S. (2011). Growth analysis of autumn and spring sown sugar beet. Eur. J. Agron. 34: 1. 1-9.
  11. Rinaldi, M. & Vonella, A.V. (2006). The response of autumn and spring sown sugar beet (Beta vulgaris ) to irrigation in Southern Italy: water and radiation use efficiency. Field Crops Res. 95: 2-3. 103-114.
  12. Streibie, J.C., Ritz, C., Pipper, C.B., Yndgaard, F., Fredlund, K. & Thomsen, J.N. (2009). Sugar beet, bioethanol, and climate change. IOP Publishing, Denmark.
  13. Basati, J., Kolivand, M., Neamati, A. & Zareii, A. (2003). Study of autumn sowing of sugar beet in the tropical areas of kermanshah province. J. Sugar Beet. 18: 2. 119-130.
  14. Gauch, H. 1992. Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier Science Publishers, Amsterdam.
  15. Gauch, H.G. & Zobel, R.W. (1997). Identifying mega-environments and targeting genotypes. Crop Sci. 37: 2. 311-326.
  16. Ebdon, J. and Gauch, H. 2002. Additive main effect and multiplicative interaction analysis of national turfgrass performance trials: I. Interpretation of genotype× environment interaction. Crop Sci. 42: 2. 489-496.
  17. Olivoto, T., Lúcio, A.D.C., da Silva, J.A.G., Sari, B. & Diel, M.I. (2019). Mean Performance and Stability in Multi-Environment Trials II: Selection Based on Multiple Traits. J. Agron. 111: 6. 2961-2969.
  18. Kunz, M., Martin, D. & Puke, H. (2002). Precision of beet analyses in Germany explained for polarization. Sugar IND. 127: 1. 13-21.
  19. Reinfeld, E., Emmerich, G., Baumgarten, C., Winner & Beiss, U. (1974). Zur Voraussage des Melassez zuckersaus Ruben analysen Zucker. edn. D.A. Cooke and R. K. Scott, editors, London, UK., Chapman & Hall, World Crop Series, Pp: 2-5.
  20. Cook, D. & Scott, R. (1993). The sugar beet crop: science into practice. New York, USA, Champan and Hall Press, 154 p.
  21. Sneller, C., Kilgore-Norquest, L. & Dombek, D. (1997). Repeatability of yield stability statistics in soybean. Crop Sci. 37: 2. 383-390.
  22. Zobel, R. 1994. Stress resistance and root systems. In: 1–4 Aug. 1994. of the workshop on adaptation of plants to soil stresses, INTSORMIL Publ. 94–2. Inst., Univ Nebraska, Lincoln, Pp: 80–99.
  23. Annicchiarico, P. 1997. Joint regression vs AMMI analysis of genotype-environment interactions for cereals in Italy. Euphytica. 94: 1. 53-62.
  24. Rao, A. & Prabhakaran, V. (2005). Use of AMMI in simultaneous selection of genotypes for yield and stability. Jour. Ind. Soc. Ag. Statistics. 59: 76-82.
  25. Zali, H., Farshadfar, E., Sabaghpour, S.H. & Karimizadeh, R. (2012). Evaluation of genotype× environment interaction in chickpea using measures of stability from AMMI model. Ann. Biol. Res. 3: 7. 3126-3136.
  26. Zhang, Z., Cheng, L. & Zhonghuai, X. (1998). Analysis of variety stability based on AMMI model. Zuo Wu Xue Bao. 24: 3. 304-309.
  27. Ajay, B., Aravind, J. & Abdul Fiyaz, R. (2018). Ammistability: additive main effects and multiplicative interaction model stability parameters. R Package Ver. 11.
  28. Jambhulkar, N., Bose, L. & Singh, O. (2014). AMMI stability index for stability analysis. Central Rice Research Institute, Cuttack, Orissa. 35: 15-15.
  29. Raju, B. 2002. A study on AMMI model and its biplots. Jour. Ind. Soc. Ag. Statistics. 55: 297-322.
  30. Basafa, M. & Taherian, M. (2016). Analysis of stability and adaptability of forage yield among silage corn hybrids. J. Crop Breed. 8: 19. 185-191. (In persian)
  31. Anandan, A. & Eswaran, R. (2009). Genotype by environment interactions of rice (Oryza sativa ) hybrids in the east coast saline region of Tamil Nadu. In the Proceedings of 2nd International Rice Cong, 226 p.
  32. Mostafavi, K. & Saremirad, A. (2021). Genotype- environment interaction study in corn genotypes using additive main effects and multiplicative interaction method and GGE- biplot Method. Crop Production. 14: 3. 1-12. (In persian)
  33. Karimizadeh, R., Dehghani, H. & Dehghanpour (2008). Use of AMMI method for estimating genotype-environment interaction in early maturing corn hybrids. Seed and Plant. 23: 4. 531-546.
  34. Omrani, S., Omrani, A., Afshari, M., Saremirad, A., Bardehji, S. & Foroozesh, P. (2019). Application of additive main effects and multiplicative interaction and biplot graphical analysis multivariate methods to study of genotype-environment interaction on safflower genotypes grain yield. Journal of crop Breeding. 11: 31. 153-163. (In persian)
  35. Mostafavi, K., Rajabi, A. & Orazizadeh, M.R. (2017). Genotype- environment interaction pattern analysis for sugar beet (Beta vulgaris ) cultivars yield using AMMI multivariate method. Journal of Sugar Beet. 33: 2. 135-147. (In persian)
  36. Fasahat, P., Khayamim, S., Soltani Idliki, J., Darabi, S., Pedram, A., Hasani, M., Jalilian, A. & Babaei, B. (2019). Stability analysis of genotype × environment interaction effect on sugar yield in sugar beet hybrids. J Crop Breed. 11: 32. 33-40. (In persian)
  37. Sharifi, P., Aminpanah, H., Erfani, R., Mohaddesi, A. & Abbasian, A. (2017). Evaluation of genotype× environment interaction in rice based on AMMI model in Iran. Rice Sci. 24: 3. 173-180.
  38. Karimizadeh, R., Asghari, A., Chinipardaz, R., Sofalian, O. & Ghaffari, A. (2016). Determining yield stability and model selection by AMMI method in rain-fed durum wheat genotypes. Turkish J. Field Crop. 21: 2. 174-183.
  39. Cheloei, G., Ranjbar, G.A., Babaeian Jelodar, N., Bagheri, N. & Noori, M.Z. (2020). Using AMMI model and its parameters for yield stability analysis of rice (Oryza sativa ) advanced mutant genotypes of Tarrom-Mahalli. IJGPB. 9: 1. 70-83. (In persian)
  40. Ajay, B., Bera, S., Singh, A., Kumar, N., Gangadhar, K. & Kona, P. (2020). Evaluation of genotype× environment interaction and yield stability analysis in peanut under phosphorus stress condition using stability parameters of AMMI model. Agric. Res. 9: 4. 477-486.
  41. Sharifi, P., Abbasian, A. & Mohaddesi, A. (2021). Evaluation the mean performance and stability of rice genotypes by combining features of AMMI and BLUP techniques and selection based on multiple traits. Plant Genet. Res. 7: 2. 163-180.