تجزیه گرافیکی روابط بین صفات و پایداری ژنوتیپ‌های باقلا با استفاده از روش‌ بای‌پلات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی،

2 استادیار، بخش تحقیقات زراعی و باغی، مرکز تحقیقات کشاورزی و منابع طبیعی زنجان، سازمان تحقیقات، آموزش و ترویج کشاورزی، زنجان، ایران

3 دانشیار- بخش تحقیقات ژنتیک و بانک ژن گیاهی ملی ایران، موسسه تحقیقات اصلاح و تهیه نهال و بذر سازمان تحقیقات و آموزش کشاورزی، کرج، ایران.

چکیده

سابقه و هدف: باقلا در سراسر جهان به‌عنوان یک منبع غنی از پروتئین قابل استفاده برای انسان و دام شناخته شده‌است. این گیاه با تثبیت بیولوژیک نیتروژن به پایداری سیستم‌های زراعی کمک می‌کند. هدف از این پژوهش مطالعه برهمکنش ژنوتیپ × محیط (G×E) و تعیین ژنوتیپ‌های با عملکرد بالا و پایدار باقلا بود. علاوه بر این به منظور انتخاب ژنوتیپ‌ها بر اساس چند صفت و تعیین روابط بین صفات از تجزیه گرافیکی ژنوتیپ × صفت (GT) نیز استفاده شد.
مواد و روش‌ها: در این تحقیق برای بررسی روابط میان صفات و ارزیابی پایداری لاین‎‌های امید بخش باقلا، 9 لاین امیدبخش و رقم برکت، در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سه ایستگاه تحقیقات کشاورزی گرگان، زنجان (طارم) و زابل در دو سال زراعی (1395-96 و 97-1396) بررسی شدند. ارتفاع بوته و ارتفاع اولین غلاف از سطح زمین قبل از برداشت اندازه‌گیری شد، برداشت در مرحله رسیدگی کامل انجام و تعداد دانه در غلاف، تعداد غلاف در بوته و وزن صد دانه در ده بوته تصادفی هر کرت اندازه‌گیری شد. داده‌ها با استفاده از نرم افزار SAS مورد تجزیه و تحلیل قرار گرفت و میانگین‌ها با استفاده از آزمون LSD در سطح احتمال 5٪ مقایسه شدند. روش گرافیکیGGE-Biplot برای تجزیه و تحلیل برهم‌کنش ژنوتیپ × محیط استفاده شد. تعیین روابط بین صفات و شناسایی صفات مناسب برای انتخاب غیرمستقیم جهت بهبود عملکرد با استفاده از روش گرافیکی GTbiplot انجام شد.
یافته‌ها: تجزیه واریانس مرکب داده‌ها نشان داد، اثرات اصلی ژنوتیپ، محیط و برهمکنش ژنوتیپ × محیط بر عملکرد دانه و سایر صفات مورد بررسی در سطح احتمال یک درصد معنی‌دار بود. پایداری عملکرد دانه ژنوتیپ‌های باقلا، با استفاده از روش GGE-Biplot در پنج محیط بررسی شد. بر اساس مدل اثر متقابل ژنوتیپ × محیط (GEI)، 1/95 درصد از تغییرات اثر متقابل توجیه شد. بر اساس نمودار چند ضلعی، دو محیط کلان و ژنوتیپ‌های سازگار هر محیط تعیین شد، در گرگان و طارم لاینG9 و در زابل لاین G1 سازگار بودند. لاین‌های G9، G4، G7 و G1 به‌ترتیب با عملکرد 22/3، 06/3، 88/2 و 87/2 تن در هکتار بالاترین میانگین و پایداری عملکرد دانه را داشتند. بر اساس تجزیه و تحلیل GEI و GGE-Biplot، محیط‌ آزمایشی طارم از قدرت تفکیک خوبی برخوردار بود. تجزیه و تحلیل گرافیکی GT رابطه مثبت بین عملکرد و تعداد غلاف در بوته، عملکرد غلاف سبز، شاخص برداشت و ارتفاع پایین‌ترین غلاف را نشان داد، از این رو این صفات را می‌توان به‌عنوان صفات کلیدی در طول فرآیند انتخاب با هدف اصلاح ژنوتیپ‌های باقلا برای عملکرد بالا در نظر گرفت.
نتیجه‌گیری: ژنوتیپ‌هایG9 ، G4 و G7 با دارا بودن عملکرد و پایداری عملکرد به عنوان ارقام ایده‌آل باقلا جهت معرفی شناسایی شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Graphic analysis of trait relations and stability of faba bean genotypes using the biplot method

نویسندگان [English]

  • Fatemeh Sheikh 1
  • Hossein Nazari 2
  • Hamid Reza Fanaei 3
1 Assistant professor of Crop and Horticultural Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran.
2 2. Assistant Professor, Crop and Horticultural Science Research Department, Zanjan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Zanjan, Iran
3 Associate Prof, Department of Genetics and National Plant Gene Bank of Iran, SPII., AREEO, Karaj, Iran.
چکیده [English]

Background and objectives: Faba bean (Vicia faba L.) is grown world-wide as a protein source for food and feed. It can be used in diet as a vegetable, green or dried, fresh or canned. It is a very valuable legume crop that contributes to the sustainability of cropping systems by its ability of biological N2 fixation. The aim of the study were to determine the magnitude of G × E interaction and to identify high yielding and stable or specifically adapted genotypes for target environment(s). Furthermore to evaluating cultivars based on multiple traits and studying relationship among traits, The GT biplot was used.
Materials and methods: In this research to finding interrelationships between different traits and adoptability faba bean promising lines, 9 faba bean lines as well as check cultivar, Barekat were evaluated using randomized complete block design with three replications in three agricultural research field stations of Gorgan, Zanjan (Tarom) and , Zabol for two cropping seasons (2016-17 and 2017-18). The plant height (PH) and lowest pod height was calculated before harvesting, in each plot were harvested by hand at harvest maturity stage and seed number/pod (SP), pod number/plant (PN) and hundred seed weight (100SW) measured on ten plants selected randomly from all plots. Data were analyzed using SAS software and the means were compared using LSD test at a probability level of 5%. A GGE-Biplot was used to analyse G x E interaction and stability of the genotypes based on the trait grain yield (kg ha-1). In order to determining the interrelationships among traits and identifying suitable traits for indirect selection, the genotype by trait (GT) was done.
Results:.Combined analysis of variance showed significant effects of genotype, environment, genotype × environment intraction, on grain yield. Stability in performance of the 10 genotypes was tested using GGE-Biplot approach across five environments. GGE-Biplot analysis using a genotype × environment interaction (GEI) model explained 95.1% of total interaction effect variance. View of polygon graph revealed two superior mega-environments and the compatible genotypes were determined for each mega-environment; Gorgan and Tarom (Line G9), Zabol (Line G1). Lines G9, G4, G7 and G1 with average seed yield of 3.22, 3.06, 2.88 and 2.87 t/ha, respectively, had higher seed yield and yield stability. Based on GEI and GGE-Biplot analysis, Tarom experimental environments had good differentiation ability. The GT biplot for genotype data explained 61% of total variation of the standardized data. GT biplot analysis showed positive relationship between yield and other traits number of pods per plant, Green pod yield, harvest index and Height of lowest pod, they are identified as important traits for yield improvement. Hence, these traits could be considered as key components during the selection process aiming towards the breeding of faba bean genotypes for high yield.
Conclusion: Finally, genotypes G9, G4 and G7 had the highest yield and the most stable genotypes with wider adaptation to all the test environments and can be recommended as the superior genotypes for being release as new commercial faba bean cultivars.

کلیدواژه‌ها [English]

  • Genotype ×environment Interaction (GEI)
  • Genotype ×Trait (GT) Biplot
  • Ideal genotype
  • Seed yield
  1. Karkanis, A., Ntatsi, G., Lepse, L., Fernandez, J.A., Vagen, I.M., Rewald, B., Alsiņa, I., Kronberga, A., Balliu, A., Olle, M., Bodner, G., Dubova, I., Rosa, E. and Savvas, D. 2018. Faba bean cultivation – revealing Novel Managing Practices for More Sustainable and Competitive European Cropping Systems. Front. Plant Sci. 9: 11-15.
  2. Katerj, N., Hoorn, J.W., Hamdy, A., Mastrorilli, M. and Oweis, T. 2009. Salt tolerance analysis of chickpea, faba bean and durum wheat varieties I. Chickpea and faba bean. Agric. Water Manag. 72: 177-194.
  3. Etemadi, F., Hashemi, M., Barker, A.V., Zandvakili, O.R. and Xiaobing, L. 2019. Agronomy, Nutritional Value, and Medicinal Application of Faba Bean (Vicia faba L.). Hortic. Plant J. 5: 170-182.
  4. Fikere, M., Tadesse, T. and Letta, T. 2008. Genotype - Environment Interactions and Stability Parameters for Grain Yield of faba bean (Vacia faba L.) Genotypes Grown in South Eastern Ethiopia. Int. J. Sustain. 3: 6. 80-87.
  5. Flores, F., Hybl, M.J., Knudsen, C., Marget, P., Muel, F., Nadal, S., Narits, B., Raffiot, O., Sass, I., Solis, J., Winkler, F., Stoddard, L. and Rubiales, D. 2013. Adaptation of spring faba bean types across European climates. Field Crops Res. 145: 1-9.
  6. Sheikh, F. and Feyzbakhsh, M.T. 2019. Faba bean handbook. Golestan Agricultural and Natural Resources Research and Education Center. Agricultural Research, Education and Extension Organization. (In Persian)
  7. FAO. 2017. FAOSTAT Database. Food and Agriculture Organization of the United Nations. Available at: www.fao.org/faostat. Accessed 10 June 2017.
  8. Sheikh, F., Sekhavat, R., Asteraki, H. and Parkasi, A.R. 2021. Evaluation of seed yield stability of faba bean (Vicia faba L.) genotypes using GGE biplot analysis. J. Crop Prod. Process. 11: 3. 85-89. (In Persian)
  9. Sarparast, R., Sheikh, F. and Sowghi, H.A. 2011. Investigation of genotype and environment interaction and cluster analysis for seed yield in different lines of faba bean (Vicia faba L.). Iranian J. Pulses Res. 2: 99-106. (In Persian)

10.Haile, G.A. and Kebede, G.A. 2021. Identification of stable faba bean (Vicia faba L.) genotypes for seed yield in Ethiopia using GGE model. J. Plant Dev. 9: 4. 163-169.

11.Yan, W. and Hunt, L.A. 2002. Biplot analysis of multi-environment trial data, P 289-303. In: M.S. Kang (ed). Quantitative genetics, genomics and plant breeding. CAB international, willing ford.

12.Yan, W. and Rajcan, I. 2002. Biplot Analysis of test sites and trait relations of soybean in Ontario. Crop Sci. 42: 11-20.

13.Zeleke, A.A. and Berhanu, F.A. 2016. AMMI and GGE models analysis of stability and GEI of common bean (Phaseolus vulgaris L.) lines in Ethiopia. J. Biol. Agric. Health. 6: 9. 127-135.

14.Akan, K. and Akcura, A. 2018. GGE-Biplot analysis of reactions of bread wheat pure lines selected from central Anatolian landraces of Turkey to leaf rust disease (Puccinia triticina) in multiple location-years. Cereal Res. Commun. 46: 2. 311-320.

15.Pourdad, S.S. and Moghaddam, M.J. 2013b. Study on Genotype × Environment Interaction through GGE Biplot for Seed Yield in Spring Rapeseed (Brassica napus L.) in Rain-Fed Condition. J. Crop Breed. 5: 1-13.

16.Botovic, D., Ţivanovic, T., Popovic, V., Tatic, M., Gospavic, Z., Miloradovic, Z., Stankovic, G. and Đokic, M. 2018. Assessment stability of maize lines yield by GGE-biplot analysis. Genetika. 50: 3. 755-770.

17.Pourdad, S.S. and Moghaddam, M.J. 2013a. Study on seed yield stability of sunflower inbred lines through GGE biplot. Helia. 36: 58. 19-28.

18.Ali, I.N., Ullah khan, F., Mohammad, M., Atif, A., Abbas, Z., Bibi, S., Ali, I., Amin, Sh. and Mehboob-ur, R. 2017. Genotype by environment and GGE-Biplot analyses for seed cotton yield in upland cotton.  Pak. J. Bot. 49: 6. 2273-2283.

19.Jahanzaib, M., Nawaz, N., Khurshid, H.S., Jan, A., Arshad, M. and Hassan, I. 2019. Estimating genotype × environment interaction for groundnut seed yield across different ecological zones. Int. J. Agric. Biol. 22: 139-145.

20.Hirpa, L., Nigussie, D., Setegn, G., Geremew, B. and Firew, M. 2013. Multivariate analysis as a tool for indirect selection of common bean genotypes (Phaseolus vulgaris L.) for soil acidity tolerance under field conditions. J. Sci. Technol.  2: 7-15.

21.Firew, A.M., Amsalu, B. and Tsegaye, D. 2019. Additive main effects and multiplicative interaction (AMMI) and genotype main effect and genotype by environment interaction (GGE) biplot analysis of large white bean (Phaseolus vulgaris L.) genotypes across environments in Ethiopia. Afr. J. Agric. Res. 14: 35. 2135-2145.

22.Donoso-Nanculao, G., Paredes, M., Becerra, V., Arrepol, C. and Balzarini, C. 2018. GGE biplot analysis of multi-environment yield trials of rice produced in a temperate climate. Chi. J. Agric. Res. 76: 2. 152-157.

23.Farshadfar, E. 2013. Simultaneous selection of yield and yield stability in chickpea genotypes using the GGE biplot technique. Acta Agron. Hung. 61: 185-194.

24.Koocheki, A.R., Sorkhi Lalehloo, B. and Eslamzadeh Hesari, M.R. 2012. Yield stability of barley elite genotypes in cold regions of Iran using GGE biplot. Seed Plant Improv. J. 28: 1. 533-543. (In Persian)

25.Gurmu, F., Lire, E., Asfaw, A., Alemayehu, F., Rezene, Y. and Ambachew, D. 2012. GGE-Biplot Analysis of Grain Yield of faba Bean Genotypes in Southern Ethiopia. Electron. J. Plant Breed. 3: 3. 898-907.

26.Koc, S., Orak, A., Tenikecier, H.S. and Saglam, N. 2018. Relationship between seed yield and yield chracteristics in faba bean (Vicia faba L.) by GGE-biplot analysis. J. Life Sci. 12: 105-110.

27.Yan, W. and Kang, M.S. 2003. GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton, FL. 288P.

28.Dehghani, H., Omidi, H. and Sabaghnia, N. 2008. Graphic analysis of trait relations of rapeseed using the biplot method. J. Agron. 100: 1443-1449.

29.Hosseini, S.Z. 2016. Evaluation of drought tolerance in canola (Brassica napus L.) genotypes, using biplot analysis. J. Crop Breed. 8: 192-202. (In Persian)

30.Shiri, M.R. and Bahrampour, T. 2016. Genotype × environment interaction analysis using GGE biplot in grain maize (Zea mays L.) hybrids under different irrigation conditions. Cereal Res. 5: 83-94. (In Persian)

31.Shojaei, S.H., Mostafavi, Kh., Khosroshahli, M. and Bihamta, M.R. 2020. Assessment of genotype-trait interaction in maize (Zea mays L.) hybrids using GGT biplot analysis. Food Sci. Nutr. 8: 5340-5351.

32.Sabaghnia, N., Mohebodini, M. and Janmohammadi, M. 2016. Biplot analysis of trait relations of spinach (Spinacia oleracea L.) landraces. Genetika. 48: 2. 675-690.

33.Sabaghnia, N., Dehghani, H. and Sabaghpour, S.H. 2008. Graphic analysis of genotype by environment interaction for lentil yield in Iran. Agron. J. 100: 760-764. (In Persian)

34.Rahmati, M. 2020. Assessment of relationships among traits and selection of superior bread wheat genotypes using genotype by yield × trait biplot method. Cereal Res. 10: 61-72. (In Persian)

35.Oliveira, T.R., Gravina, G.A., Ferreira de Oliveira, G.H., Cordeiro Araújo, K., Cordeiro de Araujo, L., Figueiredo Daher, R. and Vivas, M. 2018. The GT biplot analysis of green bean traits. Cienc. Nat. (St. Maria, Braz.). 48: 6. 1-6.

36.SAS Institute Inc. 2003. Version 9.1. SAS Institute Inc., Cary, NC.

37.Motamedi, M. and Safari, P. 2019. Evaluation of Water Deficient Stress Tolerance in some Wheat Cultivars and Their hybrids using canonical discriminant analysis and genotype by trait biplot. J. Crop Breed. 29: 104-116. (In Persian)

38.Ammar, M.H.S., Alghamdi, S., Migdadi, A., Muhammad, H.M., Khan, M.H., El-Harty, E.H. and Al-Faifi, S.A. 2015. Assessment of genetic diversity among faba bean genotypes using agro-morphological and molecular markers. Saud J. Biol. Sci.  22: 340-350.

39.Chaubey, B.K., Yadav, C.B., Mishra, V.K. and Kumar, K. 2012. Genetic divergence analysis in faba bean (Vicia faba L.). Agric. Sci. Res. J. 5: 1. 64-67.

40.Karadavut, U., Palta, C., Kavurmaci, Z. and Bolek, Y. 2010. Some grain yield parameters of multi-environmental trials in faba bean (Vicia faba L.) genotypes. Int. J. Agric. Biol. 12: 217-220.

41.Yan, W. and Fregeau-Reid, J. 2008. Breeding line selection based on multiple traits. Crop Sci. 48: 417-423.

42.Okadejo, A.S., Akinwale, R.O. and Obisesan, I.O. 2011. Interrelationships between grain yield and other physiological traits of cowpea cultivars. Afr. Crop Sci. J. 19: 3. 189-200.

43.Badu-Apraku, B. and Akinwale, R.O. 2011. Cultivar evaluation and trait analysis of tropical early maturing maize under Striga-infested and Striga-free environments. Field Crops Res. 121: 186-194.