پیش بینی سرعت ظهور برگ، شاخص سطح برگ و مراحل رشد دو گیاه ذرت و آفتابگردان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه کشاورزی، دانشگاه پیام نور، تهران، ایران،

2 استادیار، گروه کشاورزی، دانشگاه پیام نور، تهران، ایران،

چکیده

سابقه و هدف
پیش بینی فنولوژی، سرعت ظهور برگ(فیلوکرون) و علی الخصوص حداکثر شاخص سطح برگ در هر منطقه با استفاده از مدل‌های ریاضی در جوامع گیاهی از اهمیت زیادی برخوردار است. بنابراین با توجه به اهمیت پیش بینی فنولوژی، سطح برگ و زمان تا اتمام رشد برگ دو گیاه مهم صنعتی ذرت و آفتابگردان، این تحقیق جهت معرفی و آزمون اعتبار سنجی مدل فنولوژی Phenology MMS در شرایط محیطی بوکان، پیش بینی سرعت ظهور برگ یا فیلوکرون در شرایط تنش کم آبی متوسط و تصحیح ضرایب روابط آلومتریک پیش بینی کننده شاخص سطح برگ ذرت رقم سینگل گراس 704 و آفتابگردان رقم شمشیری به اجرا درآمد.

مواد و روشها
در این تحقیق ابتدا اعتبار مدل Phenology MMS در پیش بینی مراحل نموی و تعداد برگ در ساقه ذرت آفتابگردان با استفاده از داده-های مزرعه‌ای سنجش شد و سپس با برازش مدل دو تکه‌ای، به شیوه درون یابی، روز و زمان حرارتی لازم تا پایان رشد برگ و فیلوکرون (درجه روز بر برگ) در دو حالت بدون تنش و تنش متوسط استخراج شدند. سپس با استفاده از روابط آلومتریک بین تعداد برگ و شاخص سطح برگ بهترین مدل آلومتریک برای تخمین شاخص سطح برگ انتخاب شد.


نتایج
نتایج نشان داد که مدل بخوبی قادر به پیش بینی مراحل نموی ذرت و آفتابگردان است و روز و ترمال تایم لازم تا هر مرحله خاص نموی را در دو حالت پس از کشت و پس از سبز شدن پیش بینی می‌ کند. نتایج همچنین نشان داد که گیاه ذرت پس از گذراندن 9/782 درجه روز به زمان پایان رشد برگ خود خواهد رسید که این زمان حرارتی دقیقاً پس از طی 3/72 روز (در منطقه اجرای تحقیق) پس از سبز شدن کسب خواهد شد. در آفتابگردان نیز گیاه پس از کسب 1/798 درجه یعنی در 14/59 روز پس از سبز شدن به پایان رشد برگ میرسد به بیان ساده‌تر با گذشت هر 3 و 06/2 روز پس از سبز شدن، یک برگ به تعداد برگهای ذرت و آفتابگردان به ترتیب اضافه خواهد شد. در صورت بروز تنش متوسط، شیب خط رگرسیون تغییرات تعداد برگ در مقابل زمان حرارتی نیز افزایش پیدا کرد و به 0285/0 و 033/0 برگ بر درجه روز به ترتریب در ذرت و آفتابگردان، افزایش پیدا کرد. نتایج پیش بینی سطح برگ با استفاده از دو رابطه توانی و یک رابطه دو تکه‌ای نیز نشان داد که هر سه مدل از دقت مشابهی در پیش بینی شاخص سطح برگ ذرت و آفتابگردان برخوردار هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of Rate of Leaf Appearance, Leaf Area Index and Growth Stages in Corn and Sunflower plants

نویسندگان [English]

  • Nabi khaliliaqdam 1
  • Seyyed javad Talebzade 2
1 Assistant Professor of Agriculture Department, Payame Noor University, Tehran, Iran
2 Agriculture Faculty, Payame Noor University, Tehran, Iran
چکیده [English]

Abstract
Background and objectives
Prediction of development periods of crops by mathematical models, especially, time to growth ending is so important in every area. So, as impotence of prediction of phenology, leaf area and time to leaf growth ending, this research performed to introduce and test of Phenology MMS model in environmental conditions of Boukan, prediction of leaf appearance rate, phyllochron in stress condition of drought and to correct coefficient of allometric equations of predicting of leaf area of Corn (cv. Single cross 704) and Sunflower (cv. Shamshiri).

Method and Materials
In this research, Phenology MMS evaluated using field data for corn and sunflower . Then time and thermal time needed to leaf growth ending and phyllochron (degree day per leaf) obtained using segmented model in every stress level. So, the best algometric model selected for describing of relation between leaf area and leaf number.

Results
Results showed that the model predicted development periods of corn and sunfloer well and was capable to estimate day and thermal time needed to every special development period in two state: day after sowing and day after emergence. Also, in corn, results released that time to leaf growth ending will occur after reception of 782.9 degree day which equal to 72.3 day after emergence whereas for sunflower time to leaf growth ending will occur after reception of 798.1 degree day which equal to 59.14 day after emergence. On other hands, a leaf will include to plant 3 and 2.06 day after emergence in corn and sunflower respectively. In medium tension, the slope of regression line of leaf number versus thermal time, increased and reached to 0.0285 and 0.033 leaf per degree day in corn and sunflower respectively. Results of predicting of leaf area using exponential segmented models showed that all of models were good in predicting of leaf area index.

Conclusion
As for being acceptable of results of phonological model for prediction of thermal time, leaf number and phyllochron, we advise using of this model in modeling and agronomical studies. So, drought stress can effect on leaf appearance rate and phyllochron value. All of models were good in predicting of leaf area index.
Conclusion
As for being acceptable of results of phonological model for prediction of thermal time, leaf number and phyllochron, we advise using of this model in modeling and agronomical studies. So, drought stress can effect on leaf appearance rate and phyllochron value. All of models were good in predicting of leaf area index.

کلیدواژه‌ها [English]

  • Leaf appearance
  • Model
  • phenology
  • Tension
1.Shiri, A., Khaliliaqdam, N. and Mir-Mahmoodi, T. 2014. Evaluation of different empirical models for the estimation of leaf area in various cultivars of wheat. J. Agron. Plant Breed. 10: 3. 77-88. (In Persian)
2.Soltani, A., Robertson, M.J., Mohammad-Nejad, Y. and Rahemi-Karizaki, A. 2006. Modeling chickpea growth and development: Leaf production and senescence. Field Crops Res. 138: 14-23.
3.McMaster, G.S. and Wilhelm, W. 1997. Growing degree-days: one equation, two interpretations. Agric. Forest Meteorol. 87: 291-300.
4.Khaliliaqdam, N. 2014. Sensitivity analysis of thermal time to time steps in soybean. Agric. Sci. Dev. 3: 3. 88-92.
5.McMaster, G.S. and Wilhelm, W.W.1995. Accuracy of equations predicting the phyllochron of wheat. Crop Sci. 35: 30-36.
6.Bahuguna, D.K., Kumar, V., Singh, Y.P., Kumar, N., Nishat, R. and Agrwal, D. 2014. Effect of phyllochron on leaf emergence stage in barley, wheat and rice. Agro. J. 2: 1. 121-126.
7.Frank, A.B. and Bauer, A. 1995. Phyllochron differences in wheat, barley, and forage grasses. Crop Sci. 35: 19-23.
8.McMaster, G.S., Edmunds, D.A., Wilhelm, W.W., Nielsen D.C., Prasad P.V.V. and Ascough, J. C. 2011. Phenology MMS: Aprogram to simulate crop phonological responses to water stress. Comput Electron. Agric. 77: 118-125.
9.Longnecker, N., Kirby, E.J.M. and Robson, A.1993. Leaf emergence, tiller growth, and apical development of nitrogen deficient spring wheat. Crop Sci. 33: 154-160.
10.Petroczi, I. and Matuz, J. 2002. Sesonal study of tillering and phyllochron of winter wheat in field trials. Proceedings of the 7th Hungarian congress on plant physiology. S5-P13.
11.Rosa, H.T., Walter, L.C., Streck, A., Andriolo, J.L., Silva, M.R.D. and Langner J.A. 2011.Base temperature for leaf appearance and phyllochron of selected strawberry cultivars in a suboptimal environment. Bragan Campin. 70: 4. 939-945.
12.Jafari-Moghadam, M., Sharifabad, H.H., Noormohammadi, Gh., Sadeghian Motahar, S.Y. and Siadat, S.A. 2012. Modeling the effect of micronutrients on phyllochron and leaf appearance rate in wheat. Annal Biol. Res. 3: 9. 4552-4461.
13.Qolinejad, E. 2014. Effect of drought stress, density an nitrogen rates on morphological and quality traits of sunflower in uremia climate condition. Res. crop EcoL. 1: 3.41-58.
14.Burnham, K.P. and Anderson, D.R. 2002. Model selesction and multimodel inference: A practical Information-Theoretic Approach. Springer, New York, USA.
15.Schneiter, A.A. and Miller, J.F. 1981. Description of sunflower growth stage. Crop Sci. 21: 901-903.
16.Pengelly, B.C., Muchow, R.C. and Blamey, P.C. 1999. Predicting leaf area development in response to temperature in three tropical annual forage legumes. Aust. J. Agric. Res. 50: 253-259.
17.Baker, J.T., Pinter, P.J., Reginato, R.J. and Kanemasu, E.T. 1990. Effects of temperature on leaf appearance in spring and winter wheat cultivars. Agro. J. 78: 605-613.
18.Keating, B.A., Asseng, S., Brown, S.D., Carberry, P.S., Chapman, S., Dimes, J.P., Freebairn, D. M., Hammer, G.I., Hargreaves, J.N.G., Hochman, Z., Holzworth, D., Hulth, N.I., Meinke, H., McCown, R.L., Probert, A.E., Robertson, M.J., Silburn, M., Smith, C.J., Snow, V.O., Verburg, K. and Wang, E. 2003. An review of APSIM, amodel designed for farming systems simulation. Eur J. Agron. 18: 267-288.
19.Hun, J.R. 1973. Visual qualification of wheat development. Agron. J. 65: 116-119.
20.Bakhshandeh, E., Ghadiryan., R. and Kamkar, B. 2010. A rapid and non-destructive method to determine the Leaflet, trifoliate and total leaf area of soybean. Asian Australian J. Plant Sci. Biotech. 4: 19-23.
21.Khaliliaqdam, N. 2019. Prediction of phenology, phyllochron and leaf area of wheat, J. Plant Prod Res. 2: 26. 85-99
22.Maddah-Yazdi, V., Soltani, A., Kamkar, B. and Zeinali, E. 2008. Comparative physiology of wheat and chickpea: leaves production and senescence. J. Agric. Sci. and Natur. Resour.15: 36-44. (In Persian)
24.Bakhshandeh, E., Soltani, A., Zeinali, E., Kalate –Arabi, M. and Qadrian, R. 2011. Evaluation allometric realationship between leaf area and vegetative characteristics in bread and durum wheat cultivars. Iran J. Agron. Sci. 13: 3. 642-657. (In Persian)
25.Akram-Ghaderi, F. and Soltani, A. 2007. Leaf area relationships to plant vegetative characteristics in cotton (Gossypium hirsutum L.) grown in a temperate sub-humid environment. Int. J. Plant Prod. 1: 1. 63-71.
26.Ritchie, S.W., Hanway, J.J. and Benson, G.O. 1993.How a corn plant developes (SP-48). Iowa stata university. Available in http://www.estension.iastate.edu./hancoke/info/corn.htm.
27.SAS. 2009. Statistical analysis system, Version: 9.2. Carry NC.
28.Burnham, K.P., Anderson, D.R. and Huyvaret, K.P. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observation, and comparisons. Bahav. Ecol. Sociobiol. 65: 23-35.
29.McMaster, G.S., Morgan, J.A. and Wilhelm, W.W.1992. Simulating winter wheat spike development and growth. Agric. Forest Meteorol. 60: 193-220.
30.Cutforth, H.W., Jame, Y.W. and Jefferson P.G. 1992. Effect of temperature, vernalization and water stress on phyllochron and final main stem leaf number of HY 320 and Neepawa spring wheats. Canadian J. Plant Sci. 72: 1141-1151.
32.Niklas, K.J. 1995. Plant height and the properties of some herbaceous steam. Annals Bot. 75: 133-142.
33.Rahemi, A., Soltani, A., Purreza, J., Zainali, E. and Sarparast, R. 2006. Allometric relationship between leaf area and vegetative characteristics in field-grown chickpea. J. Agric. Sci. Natur. Resour. 13: 49-59. (In Persian)
34.Tsialtas, J.T. and Maslaris, N. 2008. Leaf allometry and prediction of specific leaf area (SLA) in a sugar beet (Beta vulgaris L.) Cultivars. Photosynthetica. 46: 351-355.