مطالعه اثر متقابل ژنوتیپ و محیط در ژنوتیپ‌های ذرت به روش اثرات اصلی جمع‌پذیر و اثرات متقابل ضرب‌پذیر و روش GGE بای‌پلات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه زراعت و اصلاح نباتات، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران

2 دانشجوی دکتری تخصصی، گروه زراعت و اصلاح نباتات، دانشگاه آزاد اسلامی، واحد کرج، باشگاه پژوهشگران و نخبگان جوان، کرج، ایران

چکیده

سابقه و هدف: برهم‌کنش ژنوتیپ و محیط یکی از مهم‌ترین عامل‌های ایجادکننده محدودیت در برنامه‌های اصلاحی محسوب می‌شود. هدف از پژوهش حاضر تجزیه برهم‌کنش ژنوتیپ و محیط برای عملکرد دانه ذرت دانه‌ای در شرایط آب و هوایی متفاوت جهت شناسایی ارقام سازگار و پایدار برای محیط‌های مورد مطالعه بر اساس مدل اثرات اصلی افزایشی و اثرات متقابل ضرب‌پذیر و روش گرافیکی GGE بای‌پلات بود.
مواد و روش‌ها: تعداد 12 ژنوتیپ ذرت دانه‌ای به‌منظور مطالعه پایداری و سازگاری در چهار محیط (اراک، بیرجند، شیراز و کرج) مورد ارزیابی قرار گرفتند. آزمایش در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سال زراعی 1395 انجام شد. از روش‌های تجزیه پایداری امی و GGE بای‌پلات جهت تجزیه‌ وتحلیل برهم‌کنش ژنوتیپ و محیط عملکرد دانه استفاده گردید.
یافته‌ها: نتایج حاصل از تجزیه واریانس امی حاکی از معنی‌دار بودن اثر محیط و اثر ژنوتیپ در سطح احتمال 1 درصد و برهم‌کنش ژنوتیپ با محیط در سطح احتمال 5 درصد بود. تجزیه اثرات ضرب‌پذیر نشان داد که تنها مؤلفه اول برهم‌کنش ژنوتیپ با محیط در سطح احتمال 1 درصد معنی‌دار است و به‌تنهایی حدود 63 درصد از واریانس برهم‌کنش را تبیین می‌نماید. بای‌پلات حاصل از میانگین عملکرد دانه برای ژنوتیپ‌ها و محیط‌ها و اولین مؤلفه اصلی برهم‌کنش مؤید برتری ژنوتیپ 6 به دلیل دارا بودن عملکرد دانه و پایداری بالا نسبت به سایر ژنوتیپ‌های تحت بررسی بود. نتایج به‌دست‌آمده از روش گرافیکی GGE بای‌پلات نشان داد که مؤلفه اصلی اول و دوم به ترتیب 97/66 و 57/20 درصد و مجموعاً 53/87 درصد از تغییرات کل موجود در داده‌های عملکرد دانه را توجیه می‌کند. بای‌پلات بررسی و مقایسه محیط‌ها نشان‌دهنده واکنش مشابه محیط‌های اراک، بیرجند و شیراز از نظر رتبه ‌عملکرد دانه ژنوتیپ‌ها بود. نمودار بای‌پلات چند ضلعی محیط‌های تحت بررسی را در یک ابر محیط قرار داد که در آن تنها ژنوتیپ 6 پایدار بود. بر اساس بای‌پلات ژنوتیپ ایده‌آل فرضی ژنوتیپ 6 از لحاظ هر دو جنبه پایداری و میانگین عملکرد دانه مطلوب‌تر از بقیه ژنوتیپ‌ها بود و سازگاری عمومی زیادی در همه محیط‌های تحت مطالعه از خود نشان داد.
نتیجه‌گیری: نتایج این مطالعه با استفاده از روش‌های چندمتغیره مؤید تأثیر بسزای اثر محیط بر عملکرد دانه در ذرت بود. ژنوتیپ‌های مورد بررسی تنوع ژنتیکی قابل ملاحظه‌ای را نشان دادند. این تنوع ژنتیکی میان ژنوتیپ‌ها به‌اندازه‌ای بود که تقریباً دو برابر عامل محیط در توجیه واریانس کل نقش داشت. نتایج حاصل از هر دو روش ژنوتیپ 6 (KSC704) را به‌عنوان ژنوتیپ پایدار معرفی کردند. این ژنوتیپ در هر چهار محیط تحت مطالعه بهترین ژنوتیپ بود.

کلیدواژه‌ها


عنوان مقاله [English]

Genotype - Environment Interaction Study in Corn Genotypes Using additive main effects and multiplicative interaction method and GGE- biplot Method

نویسندگان [English]

  • Khodadad mostafavi 1
  • Ali Saremi-Rad 2
1 Department of Agronomy and Plant Breeding, Karaj Branch, Islamic Azad University
2 Plant breeding Ph. D. student, Department of Agronomy and Plant Breeding, Young Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran
چکیده [English]

Background and objectives: The genotype- environment interaction is one of the most important factors causing constraints in breeding programs. The purpose of this study was genotype- environment interaction analyze for grain yield of corn in different weather conditions to identify adapted and stable cultivars for the studied environments based on the additive main effects and multiplicative interaction method and GGE biplot graphical method.
Materials and Methods: Twelve maize genotypes were evaluated for stability and adaptation in four environments (Arak, Birjand, Shiraz and Karaj). Experiment was conducted in a randomized complete block design with three replications in 2016. Stability analysis of AMMI and GGE biplot methods were used to analyze the effect of interaction between genotype and environment for grain yield.
Results: The results of ANOVA showed that the effect of environment and effect of genotype were significant at 1% probability level and the effect of genotype- environment interaction at the 5% probability level. The multiplicative effects analysis showed that only the first component of the genotype- environment interaction was significant at 1% probability level and alone accounts for about 63% of the genotype- environment interaction variance. Biplot was obtained from mean grain yield for genotypes and environments, and the first main component of the interaction effect was the superiority of genotype 6 due to its grain yield and high stability compared to other genotypes under study. The results obtained from the graphical GGE bipolar method showed that the main components of the first and second factors were 66.97% and 57.5%, respectively, and a total of 87.53% of the total variation in the grain yield data. Biplot analysis and comparison of the environments indicated a similar reaction in Arak, Birjand and Shiraz environments in terms of grain yield of genotypes. The polygon biplot comprised the environments under study in a mega-environment where only genotype 6 was stable. Based on the ideal genotype biplot, genotype 6 in terms of both stability and grain yield was more favorable than other genotypes and showed a high degree of adaptation in all studied environments.
Conclusion: The results of this study, using multivariate methods, showed that the effect of environment on grain yield in corn was significant. The genotypes showed significant genetic variation. The genetic variation between genotypes was so large that it was roughly twice the environmental factor in justifying the variance of the total. The results of both methods indicated genotype 6 (KSC704) as a stable genotype. This genotype was the best genotype in all four studied environments.

کلیدواژه‌ها [English]

  • Adaptability
  • corn
  • Mega- environment
  • Stability
  1. Anandan, A., and Eswaran, R. 2009. Genotype by environment interactions of rice (Oryza sativa) hybrids in the east coast saline region of Tamil Nadu. In the Proceedings of 2nd International Rice Congress, Pp: 226- 234.
  2. Basafa, M., and Taheriyan, M. 2016. Analysis of Stability and Adoptability of Forage Yield among Silage Corn Hybrids. J. of crop breed. 19: 8. 185-191. (In Persian)
  3. Chaudhary, H.K., Kaila, V., and Rather, S.A. 2014. Maize. In: Pratap, A. and Kumar, J., Eds., Alien Gene Transfer in Crop Plants: Achievements and Impacts, Springer, New York. Pp: 27-50.
  4. Ebdon, J.S., and Gauch, H.G. 2002. Additive main effect and multiplicative interaction analysis of national turfgrass perfor- mance trials: I. Interpretation of genotype environment interaction. Crop Sci. 42: 2. 489-496.
  5. Farshadfar, E., Mohammadi, M., Aghaee, M., and Vaisi, Z. 2012. GGE biplot analysis of genotype× environment interaction in wheat-barley disomic addition lines. Aust. J. of Crop Sci. 6: 6. 1074-1079.
  6. Gabriel, K.R. 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika. 58: 3. 453-467.
  7. Gauch, H.G., and Zobel, R.W. 1997. Identifying mega-environments and targeting genotypes. Crop 37: 2. 311-326.
  8. Gauch, H.G. 1992. Statistical Analysis of Regional Trials. AMMI Analysis of Factorial Designs. Elsevier Pub. Amsterdam, Netherlands.
  9. Hoisington, D., Khairallah, M., Reeves, T., Ribaut, J.M., Skovmand, B., Taba, S., and Warburton, M. 1996. Plant genetic resources: What can they contribute toward increased crop productivity? Proceedings of the National Academy of Sciences of the United States of 96: 11. 5937-5943.
  10. Jans, W.W.P., Jacobs, C.M.J., Kruijt, B., Elebrs, J.A., Barendse, S., and Moors, E.J. 2010. Carbon exchange of a maize (Zea mays) crops: Influence of phenology. Agric. Ecosyst. and Environ. 139: 2. 325-335.
  11. Karimizadeh, R., Dehghani, H., and Dehghanpour, Z. 2008. Use of AMMI method for estimating genotype-environment interaction in early maturing corn hybrids. Seed and Plant J. 23: 4. 531-546. (In Persian)
  12. Kaya, Y., Akcura, M., and Taner, S. 2006. GGE- biplot analysis of multi- environment yield trials in bread wheat. Turk. J.   Forest. 30: 5. 325-337.
  13. Kempton, R.A. 1984. The use of biplot in interpreting variety by environment interaction. J. Agric. Sci. Cambridge. l22: 4. 335-342.
  14. Liu, Y., Li, S., Chen, F., Yang, S., and Chen, X. 2010. Soil water dynamics use efficiency in spring maize (Zea mays) fields subjects to different water management practices on the loess Plateau, China. Agric. Water Manag. 97: 3. 769-775.
  15. Makumbi, D., Diallo, A., Kanampiu, K., Mugo, S., and Karaya, H. 2015. Agronomic performance and genotype× environment interaction of herbicide-resistant maize varieties in Eastern Africa. Crop Sci. 55: 4. 540- 555.
  16. Omrani, S., Onrani, A., Afshari, M., Saremirad, A., Bardehji, S., and Froozesh, P. 2019. Application of additive main effects and multiplicative interaction and biplot graphical analysis multivariate methods to study of genotype- environment interaction on safflower genotypes grain yield. J of Crop Breeding. 11: 31. 153-163.
  17. Panda, R.K., Behera, S.K., and Kashyap, P.S. 2004. Effective management of irrigation water for maize under stressed conditions. Agric. Water Manag. 66: 3. 181-203.
  18. Purchase, J.L. 1997. Parametric analysis to describe genotype× environment interaction and yield stability in winter wheat. Ph.D. dissertation, department of agronomy, university of Free State, Bloemfontein, South Africa.
  19. Purchase, J.L., Hatting, H., and Van Deventer, C.S. 2000. Genotype × environment interaction of winter wheat in South Africa: II. Stability analysis of yield performance. South Africa J. of plant and soil. 17: 3. 101-107.
  20. Von Braun, J., Byerlee, D., Chartres, C., Lumpkin, T., Olembo, N., and Waage, J.J. 2010. A draft strategy and results framework for the CGIAR. World Bank, CGIAR, Washington
  21. Yan, R., Crossa, J., Cornelius, P., and Bugueno, J. 2009. Biplot analysis of genotype× environment interaction: Proceed with caution. Crop Sci. 49: 5. 1564-1576.
  22. Yan, W., and Hunt, L.A. 2001. Interpretation of genotype× environment interaction for winter wheat yield in Ontario. Crop Sci. 41: 1. 19-25.
  23. Yan, W., and Kang, M.S. 2003. GGE-biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton, FL, USA.
  24. Yan, W., and Tinker, N.A. 2005. An integrated biplot analysis system for displaying, interpreting and exploring genotype× environment interaction. Crop Sci. 45: 3. 1004-1016.
  25. Yan, W., Cornelius, P.L., Crossa, J., and Hunt, L.A. 2001. Two type of GGE bipots for analyzing multi-environmental trial data. Crop Sci. 41: 3. 656-663.
  26. Yan, W., Hunt, L.A., Sheng, Q., and Szlavnics, Z. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 40: 3. 597-605.
  27. Yan, W., Kang, M.S., Ma, B., Woods, S., and Cornelius, P.L. 2007. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 47: 2. 643-655.