برآورد خلأ عملکرد و پتانسیل افزایش تولید جو دیم در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشیار، گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 استاد گروه زراعت دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

مقدمه: جو (Hordeum vulgare) سازگاری بسیار خوبی به خشکی و شوری به‌عنوان مهم‌ترین عوامل محدود کننده تولید گیاهان زراعی در ایران دارد. این سازگاری به‌علاوه کاربرد گسترده این گیاه در تغذیه دام، موجب کشت سالانه حدود 77/1 میلیون هکتار جو شده است که حدود 04/1 میلیون هکتار آن دیم است. مطالعات گذشته حاکی از وجود اختلاف قابل توجه بین عملکرد واقعی گیاهان زراعی و عملکرد پتانسیل آن‌ها می‌باشد که میزان آن به چگونگی مدیریت مزرعه بستگی دارد. در واقع، خلأ عملکرد ظرفیت افزایش تولید گیاهان زراعی از طریق بهینه‌سازی عملیات مدیریت تولید را نشان می‌دهد. مطالعه حاضر با هدف برآورد خلأ عملکرد و تولید جو در شرایط دیم در ایران، به‌عنوان اولین قدم برای برنامه‌ریزی به منظور افزایش پایدار تولید این گیاه زراعی مهم انجام شد.
مواد و روش‌ها: این مطالعه بر اساس دستورالعمل اطلس جهانی خلأ عملکرد (گیگا) انجام شد. تعیین مناطق اقلیمی اصلی زیر کشت جو دیم به عنوان نخستین گام در مطالعه حاضر، با استفاده از نقشه‌های پهنه‌بندی اقلیمی گیگا، پراکنش زمین‌های زیر کشت جو دیم و لایه‌ ایستگاه‌های هواشناسی کل کشور انجام پذیرفت. پس از تعیین مناطق اقلیمی اصلی (DCZ) و ایستگاه‌های هواشناسی مرجع (RWS)، اطلاعات 15 سال زراعی (1394- 1379) شامل مدیریت زراعی، هواشناسی و خاک در هر منطقه جمع‌آوری شد. این اطلاعات برای برآورد مقادیر عملکرد پتانسیل در سطح ایستگاه‌های مرجع کشت جو دیم به عنوان یکی از مؤلفه‌های محاسبه مقدار خلأ عملکرد مورد نیاز است. برآورد پتانسیل عملکرد دانه جو توسط مدل SSM-iCrop2 با استفاده از داده‌های 15 ساله مذکور صورت پذیرفت. همچنین، اطلاعات عملکرد واقعی در سطح ایستگاه‌ها به عنوان یکی دیگر از مؤلفه‌های تخمین خلأ عملکرد جمع‌آوری شد. در نهایت، با استفاده از دستورالعمل گیگا، مقادیر خلأ عملکرد دانه جو به‌ترتیب برای RWSها، DCZها و کل کشور برآورد شد.
یافته‌ها: در مطالعه حاضر، 17 منطقه اقلیمی اصلی به عنوان مناطق اصلی کشت جو دیم در ایران شناسایی شدند که 38 ایستگاه هواشناسی مرجع در آن‌ها قرار دارد. طبق نتایج، پتانسیل عملکرد جو دیم در مناطق اقلیمی اصلی با میانگین 2723 کیلوگرم در هکتار بین 1072 تا 4002 کیلوگرم در هکتار متغیر است. همچنین، عملکردهای واقعی محاسبه شده در DCZها 390 تا 1510 و به‌طور متوسط 1009 کیلوگرم در هکتار بود. در مناطق اصلی تولید جو دیم ایران از 615 تا 3125 کیلوگرم در هکتار و به‌طور متوسط 1714 کیلوگرم در هکتار معادل 53 تا 82 درصد (به‌طور متوسط 63 درصد) خلأ عملکرد وجود دارد. بنابراین، با در نظر گرفتن 80 درصد از پتانسیل عملکرد به‌عنوان عملکرد قابل دست‌یابی، می‌توان از طریق بهینه‌سازی عملیات مدیریت تولید، عملکرد جو دیم کشور را از 1009 کیلوگرم در هکتار فعلی به 2178 کیلوگرم در هکتار افزایش داد. بر اساس این یافته‌ها، در صورت افزایش عملکرد به سطح عملکرد قابل حصول میزان تولید جو کشور در شرایط دیم از 05/1 میلیون تن فعلی به 26/2 میلیون تن خواهد رسید که می‌تواند میزان واردات جو از سایر کشورها را به میزان 22/1 میلیون تن کاهش دهد.
نتیجه‌گیری: بر اساس نتایج این مطالعه، 85 درصد از جو دیم کشور در 17 منطقه اقلیمی مختلف تولید می‌شود. با توجه به وجود بیش از 50 درصد خلأ عملکرد (1714 کیلوگرم در هکتار (معادل 63 درصد)) در سطح مزارع جو دیم کشور، با در نظر گرفتن 80 درصد از این خلاً عملکرد به‌عنوان خلأ قابل مدیریت، تولید جو دیم در ایران 22/1 میلیون تن می‌تواند افزایش یابد که به لحاظ اقتصادی و امنیت غذایی برای کشور حائز اهمیت است. دستیابی به عملکرد پتانسیل در سطح مزارع کشاورزان با توجه به محدودیت‌های موجود امکان پذیر نیست، اما نزدیک شدن به عملکرد قابل حصول با بهبود شرایط مدیریت زراعی می‌تواند هدف دست‌یافتنی در شرایط حاضر به‌حساب بیاید.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Yield Gap and the Potential of Rainfed Barley Production Increase in Iran

نویسندگان [English]

  • Omid Alasti 1
  • Ebrahim Zeinali 2
  • Afshin Soltani 3
  • Benjamin Torabi 2
1 Agronomy Department, Plant Production Faculty, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan, Iran
2 Agronomy department, Gorgan University of Agricultural Sciences and Natural Resources
3 Agronomy department, Gorgan University of Agricultural Sciences and Natural Resources
چکیده [English]

Background and objectives: Barley (Hordeum vulgare. L) is well adapted to drought and saline conditions as the most important limiting factors for crop production in Iran. This consistency, as well as widespread application in animal feeding, are the reasons for cultivating approximately 1.77 million hectares of barley, in which, 1.04 million hectares was attributed to rainfed barley. The previous studies demonstrated that there was a significant difference between the actual and potential yield of crops due to farm management condition. According to the calculated yield loss, the optimized crop field management is necessary to increase agricultural production. This study was aimed to estimate the yield and production gap of barley under rainfed condition as the first step in the terms of the schematization of stable increase in Iran.
Materials and Methods: This study is conducted based on the Global Yield Gap Atlas (GYGA) Protocol. As the first step in the implementation of present study, the main rainfed barley harvested areas were determined using GYGA climate zones and the distribution of rainfed barley harvested area maps and the country's meteorological station points layer. After defining the designated climate zones (DCZs) and the reference weather stations (RWSs), the collected data (2000-2014) of agronomic management, meteorological and soil characteristics in each region were employed to estimate the potential yield at the RWSs of rainfed barley as one of components of the yield gap calculation. Estimating barley potential yield under water-limited condition (Yw) was carried out by SSM-iCrop2 during 15 growing seasons. Moreover, the actual yield (Ya) data of rainfed barley was collected at the RWS level as another constituent for yield gap calculation. In the end, the estimated rainfed barley yield gap (Yg) in the RWSs was aggregated to DCZs and finally country-level.
Results: In the current study, 38 RWSs within 17 DCZs of rainfed barley harvested areas were identified. The results showed that the average Yw was estimated 2723 kg. ha-1 and the range varied from 1072 to 4002 kg. ha-1. Ya range in the zones were calculated between 390 and 1510 with average of 1009 kg. ha-1. The results illustrated that there was a significant correlation between mean rainfall and maximum temperature during anthesis to harvest maturity period and Yw within 17 DCZs. Hence, with simultaneous increase in rainfall and decrease in average maximum temperature during this phenological period, concomitantly, the Yw value has been amplified. Yg values was estimated between 615 to 3125 kg. ha-1 (equivalent to 53 to 82% of yield gap (%)) with an average of 1714 kg ha-1. Improving the current management conditions to advance toward the attainable yield (Ya) (equivalent to 80% of Yw) in farmers' lands, can increase the average yield of rainfed barley from 1009 to 2178 kg ha-1. Based on the results, the country's production will grow from 1.05 million tons to 2.26 million tons in rainfed conditions through increasing yield to the level of attainable yield (80% of potential yield). The rate of barley import from other countries will decrease due to improvement in the production.
Conclusion: Our results showed 85 percent of rainfed barley production had been attributed to 17 designated climate zones. Due to the presence of 63% yield gap in rainfed barley fields, by considering 80% of this value as exploitable yield gap, the production can be increased to about 1.22 million tons which is appreciable for the economical and food security issues in Iran. It is not feasible to achieve the potential yield at the farmer level owing to existing constraints, but approaching the attainable yield by improving field management conditions can be accessible in the current situation.

کلیدواژه‌ها [English]

  • "Actual Yield"
  • "Climate Zones"
  • "GYGA"
  • "Potential Yield"
  1. Alqudah, A.M., Samarah, N.H., and Mullen, R.E. 2011. Drought stress effect on crop pollination, seed set, yield and quality. In: LICHTFOUSE, E. (ed.) Alternative farming systems, biotechnology, drought stress and ecological fertilization. Dordrecht: Springer Netherlands.
  2. Anderson, W.K. 2010. Closing the gap between actual and potential yield of rainfed wheat. The impacts of environment, management and cultivar. Field Crop. Res. 116: 1-2. 14-22.
  3. Anderson, W., Johansen, C., and Siddique, K.H.M. 2016. Addressing the yield gap in rainfed crops: a review. Agron. Sustain. Dev. 36: 1-13.
  4. ArcGIS [GIS software]. 2014. Version 10.3. Environmental Systems Research Institute, Inc. CA.
  5. Asseng, S., Cao, W., Zhang, W., and Ludwig, F. 2009. Crop physiology, modelling and climate change: impact and adaptation strategies. in: V.O. Sadras and D.F. Calderini (eds), Crop physiology: applications for genetic improvement and agronomy, Amsterdam: Elsevier Academic Press. Pp: 511-543.
  6. Barnabás, B., Jäger, K., and Fehér, A. 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell Environ. 31: 1. 11-38.
  7. Bishaw, Z., and Alemu, D. 2016. Barley yield gaps, varietal adoption, and seed commercial behavior of smallholder farmers in Ethiopia. Conference Paper. CRP DC and CRP GL Review Meeting. CGIAR.
  8. Boogaard, H., Wolf, J., Supit, I., Niemeyer, S., and van Ittersum, M., 2013. A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union. Field Crop. Res. 143: 130-142.
  9. Bruinsma, J. 2009. The resource outlook to 2050: By How much do land, water and crop yields need to increase by 2050. FAO Expert Meeting on How to Feed the World in 2050, Rome.
  10. Cassman, K. G., Grassini, P., and van Wart, J. 2010. Crop yield potential, yield trends, and global food security in a changing climate. Handbook of climate change and agroecosystems. Imperial College Press, London. Pp: 37-51.
  11. Chapagain, T., and Good, A. 2015. Yield and production gaps in rainfed wheat, barley, and canola in Alberta. Front. Plant Sci. 6: 1-10.
  12. Deihimfard, R., Mahallati, M.N., and Koocheki, A.R. 2015. Yield gap analysis in major wheat growing areas of Khorasan province, Iran, through crop modelling. Field Crop. Res. 184: 28-38.
  13. Dias, A.S., and Lidon, F.C. 2009. Evaluation of grain filling rate and duration in bread and durum wheat, under heat stress after anthesis. J. Agro. Crop Sci. 195: 2. 137-147.
  14. Food and Agriculture Organization (FAO). 2017. The FAOSTAT Database. Available at Web site http://faostat.fao.org /default.aspx (verified 5 September 2018).
  15. Gobbett, D.L., Hochman, Z., Horan, H., Garcia, J.N., Grassini, P., and Cassman, K.G. 2017. Yield gap analysis of rainfed wheat demonstrates local to global relevance. J. Agric. Sci. 155: 2. 282-299.
  16. Grassini, P., K.G. Cassman., and van Ittersum, M. 2017. Exploring maize intensification with the Global Yield Gap Atlas. Better Crop. Plant Food. 101: 2. 7-9.
  17. Gusmao, M., Siddique, K.H.M., Flower, K., Nesbitt, H., and Veneklaas, E.J. 2012. Water deficit during the reproductive period of grass pea (Lathyrus sativus) reduced grain yield but Maintained Seed Size. J. Agron. Crop Sci. 198: 6. 430-441.
  18. Hajjarpoor, A. 2016. Evaluation of wheat yield gap in Golestan province. PhD Dissertation, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Iran. (In Persian)
  19. Hakim, M.A., Hossain, A., da Silva, J.A.T., Zvolinsky, V.P., and Khan, M.M. 2012. Protein and starch content of 20 wheat (Triticum aestivum ) genotypes exposed to high temperature under late sowing conditions. J. Sci. Res. 4: 2. 477-489.
  20. Han, E., Ines, A., Koo, J. 2015. Global High-Resolution Soil Profile Database for Crop Modeling Applications. http://dx.doi.org/10.7910/DVN/1PEEY0, Harvard Data verse, V1.
  21. Hochman, Z., Gobbett, D., Holzworth, D., McClelland, T., van Rees, H., Marinoni, O., Garcia, J.N., and Horan, H. 2012. Quantifying yield gaps in rainfed cropping systems: A case study of wheat in Australia. Field Crop. Res. 136: 85-96.
  22. Hossain, A., Teixeira Da Silva, J.A., Lozovskaya, M.V., and Zvolinsky, V.P. 2012. High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: I. Phenology and growth. Saudi J. Biol. Sci. 19: 4. 473-487.
  23. http://www.yieldgap.org/ (Verified June 2017).
  24. http://www.fas.usda.gov/psdonline/ (Verified June 2019)
  25. Knol, R. 2016. Yield gap analysis of cereals in Romania: Causes and mitigation options. MSc. Thesis Plant Science. Plant Production Systems Department. Wageningen University. Netherland.
  26. Koocheki, a., Nassiri, M.M., Mansoori, H., and Moradi, R. 2017. Effect of climate and management factors on potential and gap of wheat yield in Iran with using WOFOST model. Iran. Intl. J. Agri. Crop. Sci. 15: 2. 244-256. (In Persian)
  27. Li, K., Yang, X., Liu, Z., Zhang, T., Liu, S., and Liu, Y. 2014. Low yield gap of winter wheat in the North China Plain. Eur. J. Agron. 59: 1-12.
  28. Lobell, D.B. 2013. The use of satellite data for crop yield gap analysis. Field Crop. Res. 143: 56-64.
  29. Lobell, D.B., Cassman, K.G., and Field, C.B. 2009. ‘Crop yield gaps: their importance, magnitudes, and causes’. Annu. Rev. Environ. Resour. 34: 1. 179.
  30. Madani, K., AghaKouchak, A., and Mirchi, A. 2016. Iran’s Socio-economic Drought: Challenges of a Water-Bankrupt Nation. Iranian Stud. 49: 6. 997-1016.
  31. Maniruzzaman, M., Biswas, J.C., Hossain, M.B., Haque, M.M., Naher, U.A., Biswas, A., Choudhury, A.K., Akhter, S., Ahmed, F., Rahman, M.M., Akhter, C.S., Mm, F.A., and Kalra, R.N. 2017. Evaluating the CERES-Rice model under dry season irrigated rice in Bangladesh, Calibration and validation. J. Agric. Crop Res. 5: 6. 96-107.
  32. Martiniello, P., and Teixeira da Silva, J. 2011. Physiological and bio-agronomical aspect involved in growth and yield components of cultivated forage species in Mediterranean environments. Eur J Plant Sci Biotechnol. 5: 64-98.
  33. Meng, Q., Hou, P., Wu, L., Chen, X., Cui, Z., and Zhang, F. 2013. Understanding production potentials and yield gaps in intensive maize production in China. Field Crop. Res. 143: 91-97.
  34. Mesgaran, M., Madani, K., Hashemi, H., and Azadi, P. 2016. Evaluation of land and precipitation for agriculture in Iran. Stanford Iran 2040 Project, Stanford University.
  35. Nehbandani, A.R. 2018. Evaluation of soybean yield gap in Iran. PhD Dissertation, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Iran. (In Persian)
  36. Pasuquin, J.M., Pampolino, M.F., Witt, C., Dobermann, A., Oberthür, T., Fisher, J., and Inubushi, K. 2014. Closing yield gaps in maize production in Southeast Asia through site-specific nutrient management. Field Crop. Res. 156: 219-230.
  37. Rezaei, E.E., Webber, H., Gaiser, T., Naab, J., and Ewert, F. 2015. Heat stress in cereals: mechanisms and modelling. Eur J. Agron. 64: 98113.
  38. Samarah, N.H. 2005. Effects of drought stress on growth and yield of barley. Agron. Sustain. Dev. 25: 1. 145-149.
  39. Sanjani, S. 2013. Agro-ecological zoning and yield gap for wheat, sugar beet and corn in Khorasan Province. PhD Dissertation, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. (In Persian)
  40. Sari Saraf, B., Bazgir, S., and Mohammadi, G.H. 2009. Zoning the climatic potentials of dry-farming wheat cultivation in the west azarbaijan (Iran). Geo Develop. 7: 13. 5-26.
  41. Schils, R., Olesen, J.E., Kersebaum, K.C., Rijk, B., Oberforster, M., Kalyada, V., Khitrykau, M., Gobin, A., Kirchev, H., and Manolova, V. 2018. Cereal yield gaps across Europe. Eur. J. Agron. 101: 109-120.
  42. Schoppach, R., Soltani, A., Sinclair, T.R., and Sadok, W. 2017. Yield comparison of simulated rainfed wheat and barley across Middle-East. Agric. Syst. 153: 101-108.
  43. Soltani, A., Hammer, G.L., Torabi, B., Robertson, M.J., and Zeinali, E. 2006. Modeling chickpea growth and development, phenological development. Field Crop. Res. 99: 1. 1-13.
  44. Soltani, A., and Sinclair, T.R. 2012. Modeling physiology of crop development, growth and yield. CAB International, Wallingford, UK.
  45. Soltani, A., Galeshi, S., Zeinali, E. 1999. Analysis of the constraints on wheat production in golestan province. Report of the research project, Golestan province management and planning organization. (In Persian)
  46. Soltani, A., Hajjarpour, A., and Vadez, V. 2016. Analysis of chickpea yield gap and water-limited potential yield in Iran. Field Crop. Res. 185: 21-30.
  47. Soltani, A., Maddah, V., and Sinclair, T.R. 2013. SSM-Wheat, a simulation model for wheat development, growth and yield. Int J. Plant. Prod. 7: 4. 711-740.
  48. Torabi, B., Soltani, A., Galeshi, S., and Zeinali, E. 2011. Assessment of yield gap due to nitrogen management in wheat. Aust J. Crop Sci. 5: 879-884.
  49. Van Ittersum, M.K., and Cassman, K.G. 2013. Yield gap analysis rationale, methods and applications - Introduction to the Special Issue. Field Crop. Res. 143: 1-3.
  50. Van Bussel, L.G.J., Grassini, P., Van Wart, J., Wolf, J., Claessens, L., Yang, H., Boogaard, H., de Groot, H., Saito, K., Cassman, K.G., and van Ittersum, M.K. 2015. From field to atlas: Upscaling of location-specific yield gap estimates. Field Crop. Res. 177: 98-108.
  51. Van Wart, J., van Bussel, L.G.J., Wolf, J., Licker, R., Grassini, P., Nelson, A., Boogaard, H., Gerber, J., Mueller, N.D., Claessens, L., van Ittersum, M.K., and Cassman, K.G. 2013. Use of agro-climatic zones to upscale simulated crop yield potential. Field Crop. Res. 143: 44-55.
  52. Wollenweber, B., Porter, J.R., and Schellberg, J. 2003. Lack of interaction between extreme high‐temperature events at vegetative and reproductive growth stages in wheat. J. Agron. Crop Sci. 189: 3. 142-150.
  53. Zahed, M. 2018. Modeling the production and yield gap of wheat in Iran. Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Iran. (In Persian)