برآورد خلأ عملکرد و بهره‌وری آب لوبیا (Phaseolus vulgaris L.) در ایران

نوع مقاله : مقاله کامل علمی- پژوهشی

نویسندگان

1 دانش‌آموخته دکتری زراعت، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشیار، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران،

3 استاد، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران،

4 دانشیار، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

10.22069/ejcp.2024.19616.2463

چکیده

لوبیای معمولی (Phaseolus vulgaris L.) به دلیل ارزش غذایی بالا نقش موثری در تامین امنیت غذایی جامعه دارد. در ایران، تامین پروتئین عمدتا وابسته به فرآورده‌های گیاهی است و در این راستا هر اقدامی در جهت بهبود عملکرد و تولید محصولات زراعی غنی از پروتئین که در رأس آن حبوبات قرار دارند، از اهمیت ویژه‌ای برخوردار است. افزایش عملکرد از طریق بهینه‌سازی مدیریت تولید و حذف عوامل ایجاد کننده خلأ عملکرد مناسب‌ترین راه برای افزایش تولید گیاهان زراعی و ارتقای امنیت غذایی به شمار می‌رود. بنابر این، برای تأمین پایدار غذا برآورد دقیق عملکرد پتانسیل و خلأ عملکرد و تولید محصولات زراعی ضروری است. بنابراین مطالعه حاضر با هدف برآورد میزان خلأ عملکرد و تولید و بهره‌وری آب لوبیا در مناطق اقلیمی اصلی تولید آن در کشور بر اساس پروژه اطلس جهانی خلأ عملکرد (GYGA) در دانشگاه علوم کشاورزی و منابع طبیعی گرگان در سال 1395 انجام شد.
به منظور برآورد خلأ عملکرد و بهره‌وری آب لوبیا در ایران مطابق با دستورالعمل گیگا ابتدا داده‌های مربوط به عملکرد کشاورزان (Ya) و سطح زیر کشت و تولید لوبیا در کشور در بازه زمانی 15 ساله 1380 تا 1394 از وزارت جهاد کشاورزی ایران تهیه شد. سپس نقشه پراکنش لوبیا در کشور رسم شد. با روی هم گذاشتن نقشه پراکنش سطح زیر کشت لوبیا و نقشه پهنه‌بندی اقلیمی کشور، مناطق اقلیمی اصلی تولید لوبیا مشخص شدند. سپس متناسب با سطح هر پهنه اقلیمی، ایستگاه‌های هواشناسی مرجع انتخاب شدند. به منظور برآورد میزان عملکرد پتانسیل (Yp) و بهره‌وری آب لوبیا (Wp) بر اساس داده‌های هواشناسی و نوع خاک غالب و شیوه‌های مدیریتی در هر کدام از مناطق انتخاب شده از مدل شبیه‌سازی گیاه SSM-iCrop2 استفاده شد که به‌صورت محلی کالیبره و ارزیابی شده بود. خلأ عملکرد از اختلاف عملکردهای پتانسیل و واقعی هر ایستگاه برآورد و با روش بزرگ مقیاس نمایی از ایستگاه به مناطق اقلیمی اصلی و سپس به کل کشور تعمیم داده شد.
یافته‌ها: نتایج مقایسه میانگین عملکرد واقعی لوبیا گزارش شده توسط وزارت کشاورزی با عملکرد واقعی محاسبه شده طبق پروتکل گیگا برای کشور با RMSE، CV و r به ترتیب برابر با 84 کیلوگرم در هکتار، 4 درصد و 96/0 نشان داد که با استفاده از این پروتکل می‌توان میانگین عملکرد پتانسیل لوبیا در کشور را با دقت بالایی برآورد نمود. میانگین عملکرد واقعی لوبیا در ایران طی سال‌های 1380 تا 1394 بین 6/1 و 3/2 تن در هکتار متغیر بود. همچنین، میانگین عملکرد واقعی در مناطق اقلیمی اصلی تولید این محصول برابر با 9/1 و در دامنه 1/1 (منطقه اقلیمی 4202 واقع در گرمی) تا 3/2 تن در هکتار (در منطقه اقلیمی 3003 واقع در آوج) قرار داشت. عملکرد پتانسیل لوبیا از 4/3 (در منطقه اقلیمی 4202 واقع در گرمی) تا 4/5 تن در هکتار (در منطقه اقلیمی 4103 واقع در همدان و بیجار) با میانگین 5/4 تن در هکتار تخمین زده شد. بر اساس این نتایج، در مناطق اقلیمی اصلی تولید لوبیا در ایران 8/1 تا 5/3 (به طور متوسط 6/2) تن در هکتار معادل 46 تا 67 (به طور متوسط 57 درصد) خلأ عملکرد وجود دارد. میانگین پانسیل بهره‌وری آب برای تولید لوبیا در ایران 76/0 کیلوگرم بر متر مکعب برآورد شد.
بر اساس نتایج این مطالعه در صورت حذف عوامل ایجاد کننده خلأ عملکرد از طریق بهینه‌سازی مدیریت تولید و کشت لوبیا و رسانیدن عملکرد مزارع لوبیا به عملکرد قابل حصول (80 درصد عملکرد پتانسیل) یعنی افزایش عملکرد دانه از مقدار فعلی 9/1 به 6/3 تن در هکتار با همین سطح زیر کشت، تولید لوبیا در ایران از 223 هزار تن فعلی به 416 هزار تن خواهد رسید که معادل 46 درصد افزایش تولید است و گام مهمی در ارتقای امنیت غذایی تلقی می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of yield gap and water productivity of bean (Phaseolus vulgaris L.) in Iran

نویسندگان [English]

  • Samaneh Mohammadi 1
  • Ebrahim Zeinali 2
  • Afshin Soltani 3
  • Benjamin Torabi 4
1 PhD student in Agriculture, Department of Agriculture, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Associate Professor, Department of Agriculture, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran,
3 Professor, Department of Agriculture, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran,
4 Associate Professor, Department of Agriculture, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Common bean (Phaseolus vulgaris L.) due to its high nutritional value has an effective role in ensuring food security of the community. In Iran, protein supply is mainly dependent on plant products, and any action to improve the yield and production of protein-rich crops, which are headed by legumes, is of particular importance. Increasing yields by optimizing production management and eliminating yield gaps is the most appropriate way to increase crop production and improve food security. Therefore, accurate estimation of potential yield and yield gap and crop production is essential for sustainable food supply. The present study aims to estimate the yield gap and production and water productivity of bean in its main climate zones in Iran based on the Global Yield Gaps Atlas (GYGA) project at the Gorgan University of Agricultural Sciences and Natural Resources was done in 2016. In order to estimate the beans yield gap and water productivity in Iran according to GYGA protocol, first the data related to farmers' yield (Ya) and bean harvested areas and production in the country in a period of 15 years from 2001 to 2015 from the Ministry of Agriculture of Iran was prepared. Then the distribution map of beans in the country was prepared. By combining the distribution map of the bean harvested areas and the climatic zoning map of the country, the main climatic zones (DCZs) of bean production were identified. Then, reference weather stations (RWSs) were selected according to the level of each climatic zone. In order to estimate the potential yield (Yp) and water productivity (Wp) based on weather data and major soil type and agronomic management meteorological in each of the selected areas, the SSM-iCrop2 simulation model was used, which was locally calibrated and evaluated. Finally, the bean yield gap (Yg) was calculated from the difference between the potential and actual yield of each RWSs was upscaled to DCZs and country-level. The results of comparing the average of beans actual yield reported by the Ministry of Agriculture of Iran with the actual yield calculated according to the GYGA protocol for the country with RMSE, CV and r values of 84 kg ha-1, 4% and 0.96 respectively, which indicated using This protocol can estimate the average yield of bean in the country with high accuracy. The average beans actual yield in Iran during the years 2001 to 2015 varied between 1.6 and 2.3 ton ha-1. Also, the average actual yield in the main climatic zones of production was 1.9 and between 1.1 (climatic zone 4202 in Germi) to 2.3 ton ha-1 (in climatic zone 3003 in Avaj). Bean potential yield was estimated from 3.4 (in climate zone 4202 in Germi) to 5.4 ton ha-1 (in climate zone 4103 in Hamedan and Bijar) with an average of 4.5 ton ha-1. Based on results, in the main climatic zones of bean production in Iran, there is a yield gap of 1.8 to 3.5 (average 2.6) ton ha-1, equivalent to 46 to 67% (average 57%). The average water productivity potential for bean in Iran was estimated to be 0.76 kg m-3. According to the results, if the factors causing the yield gap are eliminated by optimizing the management of bean production and cultivation and bringing the yield of bean fields to attainable yield (80% of potential yield), is increasing grain yield from the current value of 1.9 to 3.6 ton ha-1 with the same harvested areas, bean production in Iran will increase from the current 222,705 to 415,822 ton, which is equivalent to 46% increase in production and is considered an important step in improving food security.

کلیدواژه‌ها [English]

  • GYGA protocol
  • production gap
  • attainable yield
  • SSM-iCrop2 model
  1. McClean, P.E., Burridge, J., Beebe, S., Rao, I.M. & Porch, T.G. (2011). Crop improvement in the era of climate change: an integrated, multi-disciplinary approach for common bean (Phaseolus vulgaris). Functional Plant Biology, 38(12), 927-933.
  2. Porch, T.G., Beaver, J.S., Debouck, D.G., Jackson, S.A., Kelly, J.D. & Dempewolf, V. (2013). Use of Wild Relatives and Closely Related Species to Adapt Common Bean to Climate Change. Agronomy, 3, 433-461.
  3. Singh, S.P. (1999). Developments in plant breeding: Common bean improvement in the twenty-first century. Kluwer Academic Publishers, the Netherlands, 409 p.
  4. Ministry of Agriculture Jahad. (2016). Agricultural Statistics. [WWW Document], n.d. URL https://www.maj.ir. [In Persian]
  5. Soltani, A., Alimagham, S.M., Nehbandani, A., Torabi, B., Zeinali, E., Zand, E., Vadez, V., van Loon, M.P. & Van Ittersum, M.K. (2020b). Future food self-sufficiency in Iran: A model-based analysis. Global Food Security, 24, 100351.

6.Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, L., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M. &Toulmin, C. (2010). Food Security: The challenge of feeding 9 billion people. Science, 327, 812–818.

  1. Fischer, T., Byerlee, D. & Edmeades, G.O. (2014). Crop yields and global food security: will yield increase continue to feed the world? ACIAR Monograph. Australian Centre for international agricultural research, Cranberra.
  2. Grassini, P., Eskridge, K.M. & Cassman, K.G. (2013). Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications, 2918, 1-11.

9.Keating, B.A., Herrero, M., Carberry, P.S., Gardner, J. & Cole, M.B. (2014). Food wedges: framing the global food demand and supply challenge towards 2050. Global Food Security, 3, 125–132.

10.Van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P. & Hochman, Z. (2013). Yield gap analysis with local to global relevance. A review. Field Crops Research, 143, 4-17.

11.Lobell, D.B., Cassman, K.G. & Field, C.B. (2009). Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources, 34,179-204.

  1. Van Ittersum, M.K. & Cassman, K.G. (2013). Yield gap analysis—Rationale, methods and applications—Introduction to the Special Issue. Field Crops Research, 143, 1-3.
  2. Soltani, A., Nehbandani, A., Zeinali, E., Torabi, B., Zand, E., Ghassemi, S., Alasti, O., Dadrasi, A., Hosseini, R.S., Alimagham, S.M., Zahed, M., Fayazi, H., Kamari, H., Arabameri, R., Mohammadzadeh, Z., Rahban, S., Mohammadi, S. & Keramat, S. (2019). Preparation of yield gap atlas and production capacity of important crops in the country in current and future climatic conditions. Sirang Vocabulary Publications. 268 p. [In Persian]
  3. Hajjarpour, A., Soltani, A., Zeinali, E., Kashiri, H. & Aynehband, A. (2017). Evaluation of wheat (Triticum aestivum L.) yield gap in Golestan province of Iran using comparative performance analysis (CPA) method. Iranian Journal of Crop Sciences, 19(2), 86 -101. [In Persian]

15.Nehbandani, A., Soltani, A., Zeinali, E. & Hoseini, F. (2017a). Analyzing soybean yield constraints in Gorgan and Aliabad katul using CPA method. Journal of Agroecology, 7(1), 109-123. [In Persian]

16.Nekahi, M.Z., Soltani, A., Siahmarguee, A. & Bagherani, N. (2014). Yield gap associated with crop management in wheat (Case study: Golestan province-Bandar-gaz). Journal of Crop Production, 7(2), 135-156. [In Persian]

17.Hajjarpour, A., Soltani, A. & Torabi, B. (2015). Using boundary line analysis in yield gap studies: Case study of wheat in Gorgan. Journal of Crop Production, 8(4), 183-201. [In Persian]

18.Nehbandani, A., soltani, A., zeinali, E., hoseini, F., shahoseini, A. & mehmandoy, M. (2017b). Soybean (Glycine max L. Merr.) Yield Gap Analysis using Boundary Line Method in Gorgan and Aliabad Katul. Journal of Agroecology, 9(3), 760-776. [In Persian]

19.Torabi, B., Soltani, A., Galeshi, S., Zeinali, E. & Kazemi Korgehei, M. (2013). Ranking factors causing the wheat yield gap in Gorgan. Journal of Crop Production, 6(1), 171-189. [In Persian]

20.Soltani, A., Hajjarpour, A. & Vadez, V. (2016). Analysis of chickpea yield gap and water-limited potential yield in Iran. Field Crops Research, 185, 21-30.

21.Torabi, B., Soltani, A., Galeshi, S. & Zeinali, E. (2011). Assessment of yield gap due to nitrogen management in wheat. Australian Journal of Crop Science, 5, 879-84.

22.dadrasi, A., Torabi, B., Rahimi, A., Soltani, A. & Zeinali, E. (2021). Determination of Potato (Solanum tuberosum L.) Yield Gap in Golestan Province. Journal of Agroecology, 12(4), 613-633.

23.Van Loon, M.P., Deng, N., Grassini, P., Edreira, J.I.R., Wolde-Meskel, E., Baijukya, F., Marrou, H. & Van Ittersum, M.K. (2018). Prospect for increasing grain legume crop production in East Africa. European Journal of Agronomy, 101, 140-148.

24.Nehbandani, A., Soltani, A., Rahemi-Karizaki, A., Dadrasi, A. & Nourbakhsh, F. (2021). Determination of soybean yield gap and potential production in Iran using modeling approach and GIS. Journal of Integrative Agriculture, 20(2), 395-407.

25.Arabameri, R., Soltani, A., Zeinali, E. &  Torabi, B. (2021). The amount and How to distribute of chickpea and lentil yield gap in Iran. Journal of Crops Improvement, 23(2), 221-234. [In Persian]

26.Alasti, O., Zeinali, E., Soltani, A. & Torabi, B. (2020). estimation of yield gap and the potential of rainfed barley production increase in Iran. Journal of Crop Production, 13(3), 41-60. [In Persian]

27.Alizadeh Dehkordi, P., Nehbandani, A., Hassanpour-bourkheili, S. & Kamkar, B. (2020). Yield gap analysis using remote sensing and modelling approaches: Wheat in the northwest of Iran. International Journal of Plant Production, 14(3), 443-452. [In Persian]

28.Ashraf Vaghefi, S., Mousavi, S.J., Abbaspour, K.C., Srinivasan, R. &  Yang, H. (2014). Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh River Basin in Iran. hydrological processes, 28(4), 2018-2032.

29.Wesseling, J.G. & Feddes, R.A. (2006). Assessing crop water productivity from field to regional scale. Agricultural Water Management86(1-2), 30-39.

  1. Hochman, Z., Gobbett, D., Horan, H. & Garcia, J.N. (2016). Data rich yield gap analysis of wheat in Australia. Field Crops Research, 197, 97-106.

31.Grassini, P., van Bussel, L.G.J., Van Wart, J., Wolf, J., Claessens, L., Yanga, H., Boogaarde, H., de Groot, H., van Ittersum, M.K. & Cassman, K.G. (2015b). How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Research, 177, 49–63.

32.Van Bussel, L.G.J., Grassini, P., Van Wart, J., Wolf, J., Claessens, L., Yang, H., Boogaard, H., Groot, H.D., Saito, K., Cassman, K.G. & Van Ittersum, M.K. (2015). From field to atlas: upscaling of location-specific yield gap estimates. Field Crops Research, 177, 98–108.

  1. HarvestChoice, (2014). "Crop Production: SPAM". International Food Policy Research Institute, Washington, DC., and University of Minnesota, St. Paul, M.N. Available online at http://harvestChoice.org/node/9716.
  2. Alimagham, S., Soltani, A., dadrasi, A. & nehbandani, A. (2021). Spatial distribution maps of horticultural and agricultural crops lands generating at the country scale for Iran. Journal of Agroecology, 15(1), 75-88. https:// doi: 10.22067/agry.2021.69619.1033. [In Persian]

35.Van Wart, J., Van Bussel, L.G., Wolf, J., Licker, R., Grassini, P., Nelson, A., Boogaard, H., Gerber, J., Mueller, N.D., Claessens, L., Van Ittersum, M.K. & Cassman, K.G. (2013). Use of agro-climatic zones to upscale simulated crop yield potential. Field Crop Research, 143, 44–55.

36.Koo, J. & Dimes, J. (2013). HC27 generic soil profile database. http://hdl.handle.net/1902.1/20299, Harvard Data verse, V4.

37.Nehbandani, A., Soltani, A., Naghab, R.T., Dadrasi, A. & Alimagham, S.M. (2020). Assessing HC27 soil database for modeling plant production. International Journal of Plant Production14(4), 679-687.

38.Soltani, A., Alimagham, S.M., Nehbandani, A., Torabi, B., Zeinali, E., Dadrasi, A., Zand, E., Ghassemi, S. Pourshirazi, S., Alasti, O., Hosseini, R.S., Zahed, M., Arabameri, R., Mohammadzadeh, Z., Rahban, S., Kamari, H., Fayazi, H., Mohammadi, S., Keramat, S., Vadeze, V., van Ittersum, M.K. & Sinclair, T.R. (2020a). SSM-iCrop2: A simple model for diverse crop species over large areas. Agricultural Systems, 182, 102855. 

  1. Passioura, J. (2006). Increasing crop productivity when water is scarce—from breeding to field management. Agricultural water management, 80(1-3), 176-196.
  2. Espe, M.B., Cassman, K.G., Yang, H., Guilpart, N., Grassini, P., Van Wart, J., Anders, M., Beighley, D., Harrell, D., Linscombe, S., McKenzie, K., Mutters, R. & Wilson, L.T. (2016). Yield gap analysis of US rice production systems shows opportunities for improvement. Field Crops Research, 196, 276–283.
  3. Grassini, P., Torrion, J.A., Yang, H.S., Rees, J., Andersen, D., Cassman, K.G. & Specht, J.E. 2015a. Soybean yield gaps and water productivity in the western U.S. Corn Belt. Field Crops Research, 179, 150–163.
  4. Kooshki, M.H., Rahmati, M., Nasrolahi, M., Mohseni-Amin, A., Kalhor, M., Astaraki, H., Shahverdi, M. & Dehghani, A. (2018). Cultivation and production of beans in Lorestan province. Ministry of Agriculture Jahad. Seed and Plant Improment Institute. Lorestan Agriculture and Natural Resources, 54046, 75 p. [In Persian]
  5. Atlin, G.N., Cairns, J.E. & Das, B. (2017). Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Global food security, 12, 31-37.
  6. Beebe, S.E., Rao, I.M., Blair, M.W. & Acosta-Gallegos, J.A. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 4(35), 1-20.
  7. Assefa, B.T., Chamberlin, J., Reidsma, P., Silva, J.V. & van Ittersum, M.K. (2020). Unravelling the variability and causes of smallholder maize yield gaps in Ethiopia. Food Security, 12(1), 83-103.
  8. Katungi, E., Horna, D., Gebeyehu, S. & Sperling, L. (2011). Market access, intensification and productivity of common bean in Ethiopia: A microeconomic analysis. African Journal of Agricultural Research, 6(2), 476-487.
  9. Alimadadi, A., Jahansooz, M. R., Ahmadi, A., Tavakol Afshari, R. & Rostamza, M. (2006). Cowpea, common bean and mung bean radiation use efficiency, light extinction coefficient and radiation interception in double cropping. Pajouhesh- Va- Sazandegi, 71, 67-75. [In Persian]
  10. Soltani, A. & Sinclair, T.R. (2012). Modeling Physiology of Crop Development, Growth and Yield. CAB. 322p.
  11. Beebe, S.E., Ramirez, J., Jarvis, A., Rao, I.M., Mosquera, G., Bueno, J.M. & Blair, M.W. (2011). Genetic improvement of common beans and the challenges of climate change. Crop adaptation to climate change, 356-369.
  12. Porch, T.G., Bernsten, R., Rosas, J.C. & Jahn, M. (2007). Climate change and the potential economic benefits of heat-tolerant bean varieties for farmers in Atlántida, Honduras. Journal of Agriculture of the University of Puerto Rico, 91, 133–148.
  13. Zhang, H., Tao, F. & Zhou, G. (2019). Potential yields, yield gaps, and optimal agronomic management practices for rice production systems in different regions of China. Agricultural Systems, 171, 100–112.
  14. Singh, R.J. & Jauhar, P.P. (2006). Genetic Resources, Chromosome Engineering and Crop Improvement: Cereals. Volume 2. CRC press.
  15. Hajjarpour, A., Kholová, J., Pasupuleti, J., Soltani, A., Burridge, J., Degala, S.B., Gattu, S., Murali, T.V., Garin, V., Radhakrishnan, T. & Vadez, V. (2021). Environmental characterization and yield gap analysis to tackle genotype-by-environment-by-management interactions and map region-specific agronomic and breeding targets in groundnut. Field Crops Research, 267, 108160 p.
  16. Wang, J., Zhang, J., Bai, Y., Zhang, S., Yang, S. & Yao, F. (2020). Integrating remote sensing-based process model with environmental zonation scheme to estimate rice yield gap in Northeast China. Field Crops Research, 246, 107682.
  17. Soltani, A., Alimagham, S.M., Nehbandani, A., Torabi, B., Zeinali, E., Zand, E., Ghassemi, S., Vadez, V., Sinclair, T.R. & Van Ittersum, M.K. (2020c). Modeling plant production at country level as affected by availability and productivity of land and water. Agricultural Systems, 183, 102859.