تحلیل راهکار افزایش مقاومت به خشکی در کلزا با تأکید بر اقلیم آینده ایران

نوع مقاله : مقاله کامل علمی- پژوهشی

نویسندگان

1 دانشجوی دکتری ، گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشیار، گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

3 استاد، گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

4 استاد، دانشکده کشاورزی گرگاندانشیار گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

10.22069/ejcp.2024.19842.2482

چکیده

سابقه و هدف: گیاه کلزا (Brassica napus L.) با دارا بودن 40 الی 44 درصد روغن یکی از مهمترین دانه‌های روغنی خوراکی محسوب شده و پس از سویا و نخل روغنی، سومین گیاه روغنی یک‌ساله جهان است. تقاضای جهانی غذا با افزایش سریع جمعیت رو به افزایش است. این تقاضا تا سال 2050 باید به میزان 60 درصد افزایش یابد که می‌تواند یک چالش اساسی، به ویژه در زمینه تغییرات آب و هوایی باشد. فعالیت‌های بشر از زمان صنعتی شدن منجر به افزایش انتشار گازهای گلخانه‌ای شده است که انتظار می‌رود الگوهای بارندگی و دمای منطقه‌ای را تغییر دهد. مهمترین خصوصیت تغییر اقلیم جهانی، افزایش معنی‌دار دما و توزیع ناموزون بارش است که فاکتورهای محدود کننده‌ای برای توسعه پایدار هستند. هدف نهایی ارزیابی ریسک تغییر اقلیم، شناسایی استراتژی‌های سازگاری برای دستیابی به توسعه پایدار در یک منطقه خاص است. راهکارهای سازگاری بسته به سیستم کشاورزی، منطقه و سناریوهای تغییر اقلیمی متفاوت می‌باشد. هدف از این مطالعه، بررسی راهکار سازگاری افزایش مقاومت به خشکی در گیاه کلزا نسبت به اقلیم آینده در ایران می‌باشد.

مواد و روش: تحقیق حاضر به‌منظور پیش‌بینی اثر تغییر اقلیم بر رشد و نمو کلزای دیم در کشور با استفاده از دو مدل گردش عمومی HadGEM2-ES و IPSL-CM5A-MR حاصل پروژه CMIP5 تحت دو سناریوی انتشار RCP4.5 و RCP8.5 گزارش ارزیابی پنجم IPCC در دوره آینده 2040 تا 2069 صورت گرفت. ریز مقیاس نمایی پارامترهای اقلیمی مولد آب و هوایی با ابزارهای تولید سناریوی اقلیمی در قالب پروژه AgMIP و در نرم افزار R انجام شد. پس از شبیه سازی اقلیم آینده و تولید پارامترهای مورد نیاز (دمای حداقل، دمای حداکثر، بارندگی و تشعشع خورشیدی)، شبیه سازی رشد و نمو کلزای دیم با استفاده از مدل SSM-iCrop2 تحت شرایط اقلیم فعلی و آینده انجام شد. همچنین با افزایش مقاومت به خشکی، نتایج شبیه سازی رشد و نمو کلزای دیم در شرایط اقلیمی آینده در ایران مورد ارزیابی قرار گرفت.

یافته ها: نتایج نشان داد میانگین دما در فصل‌ کشت کلزا در دوره آینده به طور متوسط در هر دو مدل برای سناریوی انتشار RCP4.5 به میزان 3/2 درجه سانتی‌گراد و در سناریوی RCP8.5 به میزان 1/3 درجه‌سانتی‌گراد نسبت به شرایط فعلی افزایش خواهد یافت. همچنین نتایج نشان داد که پراکنش بارندگی در بین فصول رشد بین دو مدل مذکور متغیر خواهد بود. نتایج شبیه‌سازی در شرایط تغییر اقلیم در هر دو سناریوی RCP4.5 و RCP8.5 نشان داد که با افزایش میانگین دما، طول فصل رشد در هر دو مدل مورد بررسی کاهش خواهد یافت، اما پیش‌بینی می‌شود میزان بهره‌وری آب در هر دو سناریوی انتشار افزایش یابد. پیش‌بینی می‌شود میانگین عملکرد کلزا در کشور در مناطق اصلی کشت آن، در سناریوی RCP4.5 و RCP8.5 به ترتیب به میزان 5 و 8 درصد نسبت به شرایط فعلی افزایش پیدا یابد. با استفاده از راهکار سازگاری افزایش مقاومت به خشکی، پیش‌بینی می‌شود تحت هر دو سناریوی RCP4.5 و RCP8.5 به ترتیب به میزان 8 و 9 درصد میانگین تغییرات عملکرد نسبت به آینده بدون راهکار سازگاری افزایش یابد.

نتیجه گیری: نتایج این تحقیق نشان داد به طور میانگین، عملکرد در اکثر مناطق اصلی کشت کلزا در ایران در هر دو سناریوی انتشار افزایش می‌یابد. با استفاده از راهکار سازگاری افزایش مقاومت به خشکی در اقلیم آینده، پیش‌بینی می‌شود میانگین عملکرد نسبت به آینده بدون راهکارسازگاری افزایش یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of Strategy for Enhancing Drought Resistance in Canola with Emphasis on the Future Climate of Iran

نویسندگان [English]

  • Ehsan Habibpourkashefi 1
  • Benyamin Torabi 2
  • Afshin Soltani 3
  • Ebrahim Zeinali 4
1 PhD student, Department of Agriculture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Associate Professor, Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran
3 Professor, Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran.
4 Associate Professor, Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran
چکیده [English]

Background and objectives: The canola plant (Brassica napus L.), containing 40 to 44 percent oil, is considered one of the most important edible oilseeds and is the third most significant annual oilseed crop in the world after soybean and oil palm. The global demand for food is rapidly increasing due to the growing population. This demand is expected to rise by 60 percent by the year 2050, which poses a significant challenge, especially in the context of climate change. Human activities since the industrialization era have led to an increase in greenhouse gas emissions, which are expected to alter regional rainfall patterns and temperatures. The most critical feature of global climate change is the significant increase in temperature and uneven distribution of precipitation, which are limiting factors for sustainable development. The ultimate goal of assessing climate change risks is to identify adaptation strategies to achieve sustainable development in a specific region. Adaptation strategies vary depending on agricultural systems, regions, and climate change scenarios. The aim of this study is to examine adaptation strategies to enhance drought resistance in rapeseed plants concerning future climate conditions in the country.
Materials and methods: The present study aims to predict the impact of climate change on the growth and development of rainfed canola in Iran using two general circulation models, HadGEM2-ES and IPSL-CM5A-MR, derived from the CMIP5 project under two emission scenarios, RCP4.5 and RCP8.5, as reported in the fifth assessment report of the IPCC for the future period from 2040 to 2069. The downscaling of climatic parameters generating weather data was conducted using climate scenario generation tools within the AgMIP project and implemented in R software. After simulating the future climate and producing the necessary parameters (minimum temperature, maximum temperature, precipitation, and solar radiation), the growth and development simulation of rainfed canola was carried out using the SSM-iCrop2 model under current and future climate conditions. Additionally, the results of the growth and development simulation of rainfed canola under future climatic conditions in Iran were evaluated with increased drought resistance.
Results: The results indicated that the average temperature during the canola growing season in the future is expected to increase by an average of 2.3 degrees Celsius for the RCP4.5 emission scenario and by 3.1 degrees Celsius for the RCP8.5 scenario compared to current conditions. Additionally, the results showed that the distribution of precipitation among the growth seasons would vary between the two models. The simulation results under climate change for both RCP4.5 and RCP8.5 scenarios revealed that, with the increase in average temperature, the length of the growing season would decrease in both models studied. However, it is predicted that water productivity will increase under both emission scenarios. It is anticipated that the average yield of canola in the country in its main cultivation areas will increase by 5% and 8% under the RCP4.5 and RCP8.5 scenarios, respectively, compared to current conditions. By implementing adaptation strategies to enhance drought resistance, it is expected that under both RCP4.5 and RCP8.5 scenarios, the average yield changes will increase by 8% and 9%, respectively, compared to a future without adaptation strategies.
Conclusion: The results of this study indicate that, on average, the yield in most of the main canola cultivation areas in the country is expected to increase under both emission scenarios. By implementing adaptation strategies to enhance drought resistance in the future climate, it is predicted that the average yield will increase compared to a future without adaptation strategies.

کلیدواژه‌ها [English]

  • Climate Change؛
  • Simulation
  • ؛ Yield؛
  • SSM-iCrop2 Model؛
  • Adaptation
  1. Enjalbert, J.N., Zheng, S., Johnson, J.J., Mullen, J.L., Byrne, P.F., & McKay, J.K. (2013). Brassicaceae germplasm diversity for agronomic and seed quality traits under drought stress. Industrial Crops and Products, 47, 176–185.
  2. (2003). World Agriculture: Towards 2015/2030: An FAO perspective. Available at: www.fao.org/docrep/ 005/y4252e/y4252e00.htm.
  3. Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. ESAworking paper 12-03. FAO, Rome.
  4. Bannayan, M., Lotfabadi, S., Sanjani, S., Mohammadian, A., & Agaalikhani, M. (2011). Effects of precipitation and temperature on cereal yield variability in northeast of Iran. International Journal of Biometeorology, 55, 387- 401.
  5. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., & Miller, H.L. (Eds.). Cambridge University Press, Cambridge, United Kingdom/New York, NY, USA.
  6. Babaeian, I., Najafi Nik, Z., Zabol Abasi, F., Habibi Nokhandan, M., Adab, H., & Malbousi, S. (2008). Assessment of climate change of country in 2010-2039 period using General Circulation Model data of ECHO-G. Geography and Development, 16, 135-152 (In Persian).
  7. Cohen, I., Zandalinas, S.I., Huck, C., Fritschi, F.B. & Mittler, R. (2021). Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiologia Plantarum, 171, 66–76.
  8. Yang, H., Huntingford, C., Wiltshire, A., Sitch, S., & Mercado, L. (2019). Compensatory climate effects link trends in global runoff to rising atmospheric CO2 concentration. Environmental Research Letters, 14, 124075.
  9. Hu, Y.N., Liu, Y.J., Tang., H.J. Xu., Y.L., & Jie., P.A.N. (2014). Contribution of drought to potential crop yield reduction in a wheat-maize rotation region in the North China Plain. Journalof Agricultural Science, 13(7), 1509-1519.
  10. Ludwig, F., & Asseng, S. (2006). Climate change impacts on wheat production in a Mediterranean environment in Western Australia. Agricultural Systems, 90, 159-179.
  11. Koocheki, A., & Nassiri, M. (2008). Impacts of climate change and CO2 concentration on wheat yield in Iran and adaptation strategies. Iranian Journal of Field Crops Research, 6, 139-153 (In Persian).
  12. Anwar, M.R., Liu, D.L., Farquharson, R., Macadam, I., Abadi, A., Finlayson, J., Wang, B., & Ramilan, T. (2015). Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia. Agricultural Systems, 132, 133-144.
  13. Qin, X., Wang, H., He, Y., Li, Z., Gao, Q., Wan, Y., & Parton, W. J. (2018). Simulated adaptation strategies for spring wheat to climate change in a northern high latitude environment by DAYCENT model. European Journal of Agronomy95, 45-56.
  14. Wang, B., Feng, P., Chen, C., Li Liu, D., Waters, C., & Yu, Q. (2019). Designing wheat ideotypes to cope with future changing climate in South-Eastern Australia. Agricultural Systems170, 9-18.
  15. Luo, X., Xia, J., & Yang, H. (2015). Modeling water requirements of major crops and their responses to climate change in the North China Plain. Environmental Earth Sciences, 74, 3531-3541.
  16. White, J.W., Hoogenboom, G., Kimball, B.A., & Wall, G.W. (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research, 124, 357-368.
  17. Battisti, R., Sentelhas, P.C., Boote, K.J., Câmara, G.M.D.S., Farias, J.R., & Basso, C.J. (2017). Assessment of soybean yield with altered water-related genetic improvement traits under climate change in Southern Brazil. European Journal of Agronomy, 83, 1-14.
  18. Hatzig, S.V., Schiessl, S., Stahl, A., & Snowdon, R.J. (2015). Characterizing root response phenotypes by neural network analysis. Journal of Experimental Botany, 66, 5617-5624.
  19. Seleiman, M.F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H.H., & Battaglia, M.L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10, 259.
  20. Semenov, M.A., Martre, P., & Jamieson, P.D. (2009). Quantifying effects of simple wheat traits on yield in water-limited environments using a modelling approach. Agricultural and Forest Meteorology, 149(6-7), 1095-1104.
  21. Soltani, A., & Sinclair, T.R. (2012a). Identifying plant traits to increase chickpea yield in water-limited environments. Field Crops Research, 133, 186-196.
  22. Tao, F., Rötter, R.P., Palosuo, T., Díaz-Ambrona, C.G.H., Mínguez, M.I., Semenov, M.A., Kersebaum, K.C., Nendel, C., Cammarano, D., Hoffmann, H., Ewert, F., Dambreville, A., Martre, P., Rodríguez, L., Ruiz-Ramos, M., Gaiser, T., Höhn, J.G., Salo, T., Ferrise, R., Bindi, M., & Schulman, A.H. (2017). Designing future barley ideotypes using a crop model ensemble. European Journal of Agronomy82, 144-162.‏
  23. Vadez, V. (2014). Root hydraulics: the forgotten side of roots in drought adaptation. Field Crops Research, 165, 15-24.
  24. Richards, R.A., Rebetzke, G.J., Condon, A.G., & Van Herwaarden, A.F. (2002). Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Science, 42(1), 111-121.
  25. Senapati, N., Stratonovitch, P., Paul, M.J. & Semenov, M.A. (2019). Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany70(9), 2549-2560.‏
  26. Walid, S., Jose, R.L., & Kevin, P.S. (2021). Transpiration increases under high-temperature stress: Potential mechanisms, trade-offs and prospects for crop resilience in a warming world. Plant Cell Environment, 44, 2102-2116.
  27. Hossain, S.M., Masle, J., Easton, A., Hunter, M.N., Godwin, I.D., Farquhar, G.D., & Lambrides, C.J. (2020). Genetic variation for leaf carbon isotope discrimination and its association with transpiration efficiency in canola (Brassica napus). Functional Plant Biology47(4), 355-367.
  28. Christopher, J.T., Christopher, M.J., Borrell, A.K., Fletcher, S. & Chenu, K. (2016). Stay-green traits to improve wheat adaptation in well-watered and water-limited environments. Journal of Experimental Botany, 67, 5159-5172.
  29. Luche, H.D., Da Silva, J.A.G., Da Maia, L.C, & De Oliveira A.C. (2015). Stay green: a potentiality in plant breeding. Ciencia Rural, 45, 1755-1760.
  30. He, D., Wang, E., Wang, J. & Lilley, J.M. (2017). Genotype× environment× management interactions of canola across China: A simulation study. Agricultural and Forest Meteorology247, 424-433.
  31. Dolferus, R. (2014). To grow or not to grow: a stressful decision for plants. Plant Science, 229, 247–261. 10.1016/j.plantsci.2014.10.002.
  32. Soltani, A., Alimagham, S.M., Nehbandani, A., Torabi, B., Zeinali, E., Dadrasi, A., Zand, E., Ghassemi, S., Pourshirazi, S., Alasti, O., Hosseini, R.S., Zahed, M., Arabameri, R., Mohammadzadeh, Z., Rahban, S., Kamari, H., Fayazi, H., Mohammadi, S., Keramat, S., Vadez, V., van Ittersum, M.K., & Sinclair, T.R. (2020). SSM-iCrop2: A simple model for diverse crop species over large areas. Agricultural Systems, 182, 102855
  33. Rahban, S., Torabi, B., Soltani, A., & Zeinali, E. (2021). Using SSM-iCrop model to predict phenology, yield and water productivity of canola (Brassica napus) in Iran condition. Journal of Agroecology, 13(1), 157-177 (In Persian).
  34. Hoogenboom, G., Porter, C.H., Shelia, V., Boote, K.J., Singh, U., White, J.W., Hunt, L.A., Ogoshi, R., Lizaso, J.I., Koo, J., Asseng, A., Singels, L.P., & Jones, J.W. (2019). Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.5 (https://DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA.
  35. Soltani, A., & Sinclair, T.R. (2012b). Optimizing chickpea phenology to available water under current and future European Journal of Agronomy, 38, 22-31.
  36. Ruane, A.C., Winter, J.M., McDermid, S.P., & Hudson, N.I. (2015). AgMIP climate data and scenarios for integrated assessment. In Rosenzweig, C., & Hillel, D. (Eds.). Handbook of climate change and agroecosystems: The agricultural model Intercomparison and improvement project (AgMIP) (pp. 45–78). Imperial College Press.
  37. (2013). Guide for Running AgMIP Climate Scenario Generation Tools with R in Windows. AgMIP, URL: http://www.agmip.org/wp-content/uploads/2013/ 10/Guide -for- Running-AgMIP-ClimateScenario-Generation-with-R-v2.3.pdf.
  38. Soltani, A. (2009). Mathematical Modeling in Field Crops. Ferdowsi of Mashhad Univ. Press,176p. (In Persian).
  39. Soltani, A., & Sinclair, T.R. (2011). A simple model for chickpea development, growth and yield. Field Crops Research, 124, 252-260.
  40. Meza, F.J., Silva, D. & Vigil, H. (2008). Climate change impacts on irrigated maize in Mediterranean climates: Evaluation of double cropping as an emerging adaptation alternative. Agricultural Systems, 98, 21–30.
  41. Asseng, S., Jamieson, P.D., Kimball, B., Pinter, P., Sayre, K., Bowden, J.W., & Howden, S.M. (2004). Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crops Research, 85, 85-102.
  42. Yano, T., Aydin, M., & Haraguchi, T. (2007). Impact of climate change on irrigation demand and crop growth in a Mediterranean environment of Turkey. Sensors, 7, 2297-2315.
  43. Fischer,, Tupelo, F.N., Velthuizen, H., & Wiberg, D.A. (2007). Climate change impacts on irrigation water requirements: effects of mitigation, 1990–2080. Technological Forecasting Social Change, 74(7), 1083–1107.
  44. Soltani, A., Gholipoor, M. & Ghassemi-Golezani, K. (2007). Analysis of temperature and atmospheric CO2 effects on radiation use efficiency in chickpea (Cicer arietinum). Journal of Plant Sciences, 2, 89-95.
  45. Mohammed, A., Tana, T., Singh, P., Molla, A., & Seid, A. (2017). Identifying best crop management practices for chickpea (Cicer arietinum) in Northeastern Ethiopia under climate change condition. Agricultural Water Management,194, 68-77.
  46. Qian, B., Zhang, X., Smith, W., Grant, B., Jing, Q., Cannon, A. J., & Zhao, J. (2019). Climate change impacts on Canadian yields of spring wheat, canola and maize for global warming levels of 1.5 C, 2.0 C, 2.5 C and 3.0 C. Environmental Research Letters14(7), 074005.
  47. Reynolds, M.P., Calderini, D., Condon, A., & Vargas, M. (2007). Association of source/sink traits with yield, biomass and radiation use efficiency among random sister lines from three wheat crosses in a high-yield environment. Journal of Agricultural Science, 145, 3-16.
  48. Xu, Z., Zheng, X., Wang, Y., Wang, Y., Huang, Y., & Zhu, J. (2006). Effect of free-air atmospheric CO2 enrichment on dark respiration of rice plants (Oryza sativa). Agriculture, Ecosystems and Environment115(1-4), 105-112.
  49. Chen, S.X., Zhang, H., Sun, T., & Ren, Y.W. (2010). Effects of winter wheat row spacing on evapotranspiration, grain yield and water use efficiency. Agricultural Water Management, 97, 1126 -1132.
  50. Dadrasi, A., Torabi, B., Rahimi, A., Soltani, A., Salmani, F., Nehbandani, A., Nourbakhsh, F., & Ullah, A. (2022). Evaluation of water productivity in the main areas of potato cultivation in Iran, Potato Research. https://doi.org/10.1007/s11540-022-09603-7