توصیف آماری متغیرهای عملکرد و اجزای عملکرد گندم با خصوصیات فیزیکوشیمیایی خاک با استفاده از آنالیز گام به گام

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی دانشکده کشاورزی دانشگاه فردوسی مشهد

2 گروه اگروتکنولوژی دانشگاه فردوسسی مشهد

3 گروه اگروتکنولوژی، دانشکده کشاورزی دانشگاه فردوسی مشهد

چکیده

Abstract
Introduction
Characterization of physical and chemical soil criteria is a key step in understanding the source of spatial variability in the productivity across agricultural fields (21). Crop yield variability can be caused by many factors, including spatial variability of soil texture, crop management, soil physical and chemical properties and nutrient availability (45). Understanding the spatial variability of soil physical and chemical characteristics is essential for crop management, as it is directly contributing to variability in growth and yield of crop (38 & 14). Hence, understanding their spatial variability across agricultural fields is essential in optimizing the application of agricultural inputs and crop yield and it could help significantly in managing the spatial variability in the productivity of soil agroecosystems (30 & 14).
Therefore, the objectives of this study were: (i) evaluate the effect of soil physical and chemical criteria on yield indices of wheat and (ii) to investigate the correlation between physical and chmical soil properties and wheat yield.

Materials and Methods
Samplings were performed based on random-systematic method from 30 fields in Khorasan-e Razavi province during 2017 and 2018. Studied characteristics were texture, organic matter (OM), organic carbon (OC), total nitrogen (TN), available P, available K, pH and C:N ratio of soil and seed yield, biological yield, straw yield, 1000-seed weight and harvest index (HI) of wheat. Multiple regression model was used to identify the relationship between soil variables (independent variables) and wheat yield indices (dependent variables). In addition, determining the most important factors of soil physical and chemical properties which have on wheat yield criteria was done by stepwise regression analysis.

Results and discussion
The results revealed showed that the mean values of seed yield, straw yield, biological yield, 1000-seed weight and HI of wheat were observed with 3588.47 kg.ha-1, 7362.80 kg.ha-1, 10951.27 kg.ha-1, 35.40 g and 48.56%, respectively. The highest and the lowest standard errors were computed for biological yield (198.40) and 1000-seed yield (0.74), respectively. Also, The effect of soil textures was significant (p≤0.05) on soil chemical criteria and wheat yield. The maximum OM, OC, TN, available P, available K and pH were observed for sandy clay with 1.86%, 1.09%, 0.18%, 166.20 ppm, 0.05 ppm and 7.37, respectively. The maximum seed yield and biological yield were related for clay soil (with 4313.83 and 11924.86 kg.ha-1, respectively). The highest correlation coefficients were computed for OM (r=0.935**) and OC (r=0.933**) with 1000-seed weight. The most important factors influencing wheat yield by using step by step regression were OM, available P, TN and available K, respectively.

Conclusion
Longterm sustainability of agroecosystems depends on soil quality and its fertility. Poor soil management practices can lead to degraded soil and environmental quality and reduction in crop yields. Results suggest that novel management approaches are needed to maintain the longterm sustainability of soil resources and crop yields without seriously degrading the environment that this will help in reducing the cost of fertilization and improving soil and environmental quality without altering crop yields.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Statistical description of yield and yield components of wheat with soil physical, and chemical criteria using stepwise regression

نویسندگان [English]

  • Javad Shabahang 2
  • Reheleh Ahmadzadeh Ghavidel 3
1
2 Departement of Agrotechnology, Ferdowsi University of Mashhad
3 Department of Agrotechnology, College of Agriculture, Ferdowsi University of Mashhad, Iran
چکیده [English]

چکیده
مقدمه
تعیین خصوصیات فیزیکوشیمیایی خاک نقشی کلیدی در درک تغییرات مکانی در بهره‌وری مزارع کشاورزی دارد (21). تغییرات عملکرد تحت تأثیر عوامل مهمی شامل تغییرات مکانی بافت خاک، مدیریت گیاه زراعی، خصوصیات فیزیکی و شیمیایی خاک و فراهمی عناصر غذایی می‌باشد (45). تغییرات مکانی خصوصیات فیزیکی و شیمیایی خاک به طور مستقیم در رشد و عملکرد گیاه زراعی مؤثر می‌باشد، لذا درک این تغییرات برای مدیریت گیاه زراعی ضروری است (14 و 38). از این‌رو، درک تغییرات مکانی خصوصیات خاک در بوم‌نظام‌های زراعی برای بهینه‌سازی نهاده‌های کشاورزی و عملکرد ضروری می‌باشند که این تغییرات به طور معنی‌داری در بهره‌وری خاک در بوم‌نظام‌های زراعی تاثیر دارد (14 و 30).
بنابراین، اهداف این مطالعه (1) ارزیابی اثر خصوصیات فیزیکی و شیمیایی خاک بر شاخص‌های عملکرد گندم و (2) تعیین همبستگی بین خصوصیات فیزیکی و شیمیایی خاک و عملکرد گندم بودند.

مواد و روش‌ها
نمونه‌برداری به روش تصادفی- سیستماتیک از 40 مزرعه در استان خراسان رضوی در سال‌های 1396 و 1397 انجام شد. خصوصیات مورد مطالعه شامل بافت، ماده آلی، کربن آلی، نیتروژن کل، فسفر قابل دسترس، پتاسیم قابل دسترس، اسیدیته و نسبت کربن به نیتروژن خاک و عملکرد دانه، عملکرد بیولوژیکی، عملکرد کاه، وزن 1000 دانه و شاخص برداشت گندم بودند. به منظور تعیین رابطه بین متغیرهای خاک (متغیرهای مستقل) و شاخص‌های عملکرد گندم (متغیرهای وابسته) از رگرسیون چندگانه استفاده شد و برای شناسایی تأثیرگذارترین عوامل از بین خصوصیات فیزیکوشیمیایی خاک بر خصوصیات عملکرد، آنالیز رگرسیون گام به گام انجام گردید.

نتایج و بحث
نتایج نشان داد که میانگین عملکرد دانه، عملکرد کاه، عملکرد بیولوژیکی، وزن هزار دانه و شاخص برداشت گندم به ترتیب برابر با 47/3588 کیلوگرم بر هکتار، 80/7362 کیلوگرم بر هکتار، 27/10951 کیلوگرم بر هکتار، 40/35 گرم و 56/48 درصد بدست آمد. بیشترین و کمترین خطای استاندارد به ترتیب برای عملکرد بیولوژیکی (40/198) و وزن هزار دانه (74/0) محاسبه شد. اثر بافت‌های مختلف خاک بر خصوصیات شیمیایی خاک و عملکرد گندم معنی‌دار (05/0≥p) بود. بالاترین میزان ماده آلی، کربن آلی، نیتروژن کل، فسفر قابل دسترس، پتاسیم قابل دسترس و اسیدیته برای خاک رسی شنی به ترتیب برابر با 86/1 درصد، 09/1 درصد، 18/0 درصد، 20/166 پی‌پی‌ام، 05/0 پی‌پی‌ام و 37/7 بدست آمد. بالاترین عملکرد دانه و عملکرد بیولوژیکی برای خاک رسی (به ترتیب با 83/4313 و 86/11924 کیلوگرم بر هکتار) حاصل گردید. بالاترین ضریب همبستگی برای درصد ماده آلی (**935/0r=) و درصد کربن آلی (**933/0r=) با وزن هزار دانه بدست آمد. مهمترین خصوصیات شیمیایی خاک موثر بر عملکرد دانه بر اساس آنالیز رگرسیون گام به ترتیب رتبه شامل درصد ماده آلی، فسفر قابل دسترس، نیتروژن کل و پتاسیم قابل دسترس بودند.

نتیجه‌گیری
پایداری دراز مدت بوم‌نظام‌های زراعی به خصوصیات خاک و حاصلخیزی آن وابسته می‌باشد. عملیات مدیریت ضعیف خاک می‌تواند باعث تخریب خاک و کیفیت زیست محیطی و کاهش عملکرد گیاه زراعی شود. نتایج این مطالعه پیشنهاد می‌کند که از رهیافت‌های جدید مدیریتی برای حفظ ثبات پایداری منابع خاک و عملکرد گیاه زراعی در درازمدت بدون تخریب محیط زیست بهره‌گیری شود که این امر می‌تواند به کاهش هزینه‌های حاصلخیزی و بهبود خصوصیات خاک بدون تغییر عملکرد گیاه زراعی منجر شود.

کلیدواژه‌ها [English]

  • Sustainability
  • Spatial variability
  • Multiple regression
  • Organic matter
  1. Abd Elrahman, S.H., Mostafa, M.A.M., Taha, T.A., Elsharawy, M.A.O. and Eid, M.A. 2012. Effect of different amendments on soil chemical characteristics, grain yield and elemental content of wheat plants grown on salt-affected soil irrigated with low quality water. Ann. Agric. Sci., 57(2): 175–182.
  2. Aparicio, V. and Costa, J.L. 2007. Soil quality indicators under continuous cropping systems in the Argentinean pampas. Soil Till. Res., 96: 155–165.
  3. Austin, R.B., Bringham, J., Blackwell, R.D., Evans, L.T., Ford, M.A., Morgan, C.L., and Taylor, M. 1998. Genetic improvement in winter wheat yield since 1980 and associated physiological changes. J. Agric. Sci., 84: 675.
  4. Ayoub, M., Guertin, S., Lussier, S., and Smith, D.L. 1994.Timing and level of nitrogen fertility effects on spring wheat yield in eastern Canada. Crop Sci., 34(3): 748-756.
  5. Bremner, J.M. 1970. Nitrogen total, regular Kjeldahl method, In: Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. 2nd ed. Agronomy 9(1). A.S.A. Inc., S.S.S.A. Inc., Madison Publisher, Wisconsin, USA, pp: 610-616.
  6. Bruun, H.H. 2000. Patterns of species richness in dry grassland patches in anagricultural landscape. Ecography. 23: 641-650.
  7. Cox, W.J., and Cherny, D.J.R. 2001. Row spacing, plant density and Nitrogen effects on corn silage. Agron. J., 93: 597-602.
  8. Donald, C.M. 1986. The breeding of crop ideotypes. Euphytica. 17: 385-403.
  9. Elhani, S., Martos, V., Rharrabi, Y., Royo, C., and Garciadel moral, L.F. 2007. Contribution of main stem and tillers to durum wheat (Triticum aestivum L. var. durum) grain yield and its components grown in Mediterranean environments. Field Crop Res., 103: 25-35.
  10. Burgess, T.M., and Webster, R. 1980. Optimal interpolation and isarithmic mapping of soil properties. I. The semi-variogram and punctual kriging. J. Soil Sci., 31(2): 315–331.
  11. Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., and Konopka, A.E. 1994. Field-scale variability of soil properties in central Iowa soils. J, Soil Sci. Soc. Am., 58: 1501-1511.
  12. Cassman, K.G. Dobermann, A., and Walters, D.I. 2002. Agroecosystems, nitrogen use efficiency and nitrogen management. Ambio., 31: 132-140.
  13. Chambers, J.C., and Brown, R.E. 1983. Methods for vegetation sampling and analysis on revegetated mined lands. Intermountain Forest and Range Experiment Station. General Technical Report. Int.
  14. Cox, M.S., Gerard, P.D., Wardlaw, M.C., and Abshire, M.J. 2003. Variability of selected soil properties and their relationship with soybean yield. Journal of Soil Science Soc. Am., 67: 1296–1302.
  15. Dobermann, D.I., and Cassman, K.G. 2004. Plant nutrient management for enhanced productivity in intensive grain production of United States and Asia. Plant Soil., 247: 153-175.
  16. Drury, C.F., Zhang, T.Q., and Kay, B.D. 2003. The non-limiting and least limiting water range for soil nitrogen mineralization. Soil Sci. Soc. Am. J., 67: 1388-1404.
  17. Facchinelli A., Sachi E. and Mallen L. 2001. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut., 114: 313-324
  18. Gilliam F.S., and Dick D.A. 2010. Spatial heterogeneity of soil nutrients and plant species in herb-dominated communities of contrasting land use. Plant Ecol., 209: 83–94
  19. Good, A.G., Sherawat, A.K., and Muench, D.G. 2004. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci., 9: 597-605.
  20. Green, V.S., Cavigelli, M.A., Dao, T.H., and Flanagan, D.C. 2005. Soil physical properties and aggregate associated C, N, and P in organic and conventional cropping systems. Soil Sci., 170: 822-831.
  21. Hamilton J.W., and Gilbert C.S. 1972. Composition of Wyoming range plant and soil. Agricultural Experiment Station. University of Wyoming. Res. J., 55:1-14.
  22. Hay, R.K.M., and Porter, J.R. 2006. The Physiology of Crop Yield. 2nd Edition. Wiley-Blackwell, 330p.
  23. Herrick, J.E., Brown, J.R., Tugel, A.J., Shave, P.L., and Havstad, K.M. 2002. Application of soil quality to monitoring and management: paradigms from rangeland ecology. Agron. J., 94: 3–11.
  24. Hue N.V., Uchida R., and Ho M.C. 1998. Empirical models for the uptake of inorganic chemicals from soil by plants. U.S Department of Energy Office of Environmental Management, 120 p.
  25. Jin, J., and Jiang, C. 2002. Spatial variability of soil nutrients and site-specific nutrient management in the P. R. China. Comput. Electron. Agric., 36: 165–172.
  26. Karlen D.L., Mausbach M.J., Doran J.W., Cline R.G., Harris R.F., and Schuman G.E. 1997. Soil quality: A concept, definition, and framework for evaluation. Soil Sci. Soc. Am. J., 61: 4–10.
  27. Karlen, D.L., Gardner, J.C., and Rosek, M.J. 1998. A soil quality framework for evaluating the impact of CRP. J. Prod. Agric., 11: 56–60.
  28. Kaspar, T.C., Pulido, D.J., Fenton, T.E., Colvin, T.S., Karlen, D.L., Jaynes, D.B., and Meek, D.W. 2004. Relationship of corn and soybean yield to soil and terrain properties. Agron. J., 96: 700–709.
  29. Kazemi Poshtmassari, H., Pirdashti,, H.A., Bahmanyar, M.A., and Nassiri, M. 2006. Study the effects of nitrogen fertilizer rates and split application on yield and yield components of different rice (Oryza sativa L.) cultivars. Agric. J.,  20(1): 68-78. (In Persian)
  30. Kiniry, J.R, Bean, B., Xie, U., and Chen, P. 2004. Maize yield potential: Critical processes and simulation modeling in a high-yielding environment. Agric. Syst., 82: 45-56.
  31. Kivinen, S., Luoto, M., Kuussaari, M., and Helenius, J. 2006. Multi-species richness of boreal agricultural landscapes: effects of climate, biotope, soil and geographic location. J. Biogeogr., 33: 862–875.
  32. Kollias, V.J., Kalivas, D.P., and Yassoglou, N.J. 1999. Mapping the soil resources of a recent alluvial plain in Greece using fuzzy sets in a GIS environment. Eur. J. Soil Sci., 50: 261–273.
  33. Liebig, M.A., Varvel, G.E., Doran, J.W., and Wienhold, B.J. 2002. Crop sequence and nitrogen fertilization effects on soil properties in the western Corn Belt. Soil Sci. Soc. Am. J., 66: 596–601.
  34. Mc Bratney, A.B., and Odeh, I.O.A. 1997. Application of fuzzy sets in soil science: fuzzy logic, fuzzy measurements and fuzzy decisions. Geoderma., 77: 85–113.
  35. Ministry of Agriculture. 2018. Statistical Yearbook Crops. Deputy Mayor for Planning and Economic Development, The Information and Communication Technology (ICT) Center. 124 p. (In Persian)
  36. Nahvi, M., Allahgholipour, M., Ghorbanpour, M., and Mehrgan, H. 2005. The effective of planting density and nitrogenous fertilizer rate for GRH1 rice hybrid. Agric. J., 66: 33-38. (In Persian)
  37. Olsen, S.R., Cole, C.V., Watenabe, F.S., and Dean, L.A. 1954. Estimation of Available Phosphorous in Soil by Extraction With Sodium Bicarbonate, U.S. Department of Agriculture Cris 939. USA. 
  38. Peng, S., Laza, R., Visperas, R., Sanico, A., Cassman, K.G., and Khush, G. 2000. Grain yield of rice cultivars and lines developed in the Philippines since 1966. Crop Sci., 40: 307-314.
  39. Pribyl, D.W. 2010. A critical review of the conventional SOC to SOM conversion factor. Geoderma., 156: 75-83.
  40. Reynolds, W.D., Drury, C.F., Tan, C.S., Fox, C.A., and Yang, X.M. 2009. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma., 152: 252-263.
  41. Rezaei, M., and Hemati, Z. 2002. Reaction of wheat yield to soil physical and chemical characteristics in Arak Fields. World Appl. Sci. J., 20(8): 1183-1187.
  42. Sainju, U.M., Allen, B.L., Caesar-TonThat, T., and Lenssen, A.W. 2015. Dryland soil chemical properties and crop yields affected by long-term tillage and cropping sequence. Springerplus, 4: 320.
  43. Sawchik, J., and Mallarino, A.P. 2008. Variability of soil properties, early phosphorus and potassium uptake, and incidence of pests and weeds in relation to soybean grain yield. Agron. J., 100(5) DOI: 10.2134/agronj2007.0303.
  44. Shukla, M.K., Lal, R., and Ebinger, M. 2004. Principal component analysis for predicting corn biomass and grian yield. Soil Sci., 169: 215-224.
  45. Shukla, M.K., Lal, R., and Ebinger, M. 2006. Determining soil quality indicators by factor analysis. Soil Till. Res., 87: 194–204.
  46. Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W.H., Simberloff, D., and Swackhamer, D. 2001. Forecasting agriculturally driven global environmental change. Sci., 292: 281-284.
  47. Varley, J.A. 1966. Automatic methods for the determination of nitrogen, phosphorus and potassium in plant material. Analyst., 91: 119-126.
  48. Walkley, A., and Black, I. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. Soc. Am. J., 37: 29-38.
  49. Wander, M.M., Walter, G.L., Nissen, T.M., Billero, G.A., Andrews, S.S., and Cavanaugh-Grant, D.A. 2002. Soil quality: Science and process. Agronomy. 94: 23–32.
  50. Wang, X.J., and Gong, Z.T. 1998. Assessment and analysis of soil quality changes after eleven years of reclamation in subtropical China. Geoderma., 81: 339–355.
  51. Yua, Y., Huang, Y., and Zhang, W. 2012. Changes in rice yields in China since 1980 associated with cultivar improvement, climate and crop management. Field Crop Res., 136: 65-75.
  52. Zhang, Q., Yang, Z., Li, Y., Chen, D., Zhang, J., and Chen, M. 2010. Spatial variability of soil nutrients and GIS-based nutrient management in Yongji County, China. Int. J. Geogr. Inf. Sci., 24(7): 965–981.