Evaluation of salinity-stress tolerance indices in bread wheat based on grain yield, root dry weight, and biomass traits for the selection of tolerant genotypes

Document Type : Complete scientific research article

Authors

1 PhD student in Genetics and Plant Breeding, Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran,

2 Associate Professor, Plant Breeding and Biotechnology Department, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran,

3 Professor, Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran,

4 PhD in Molecular Plant Breeding, Molecular Physiology Research Department, Agricultural Biotechnology Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran,

Abstract

Background and purpose: Salinity stress is a major limiting factor for bread wheat production and poses a significant threat to global food security. The root system, critical for water and nutrient absorption, plays an essential role in determining yield under saline conditions. Root development directly influences grain yield and biomass production in salt-affected soils. Therefore, selecting salinity-tolerant genotypes through the simultaneous evaluation of root dry weight, biomass and grain yield traits and stress tolerance indices is an effective strategy for identifying salt‐tolerant genotypes in breeding programs.
Materials and methods: This study evaluated 92 bread wheat genotypes, including commercial cultivars and native lines, in a split-plot design within a randomized complete block design (RCBD) with three replications. The experiment was conducted under both saline (16.9 dS/m) and non-saline (2.3 dS/m) soil conditions in pots at the research greenhouse of Gorgan University of Agricultural Sciences and Natural Resources during the 2022–2023 crop year. Key traits such as grain yield, biomass, and root dry weight were measured after full plant maturity to assess their relationships under salinity stress.
Results: Analysis of variance revealed statistically significant differences among genotypes for grain yield, biomass, and root dry weight under both saline and non-saline conditions. Salinity stress significantly reduced these traits, with the greatest decreases observed in grain yield (71%), biomass (65%), and root dry weight (53%) based on the sensitivity index (SI). A positive and significant correlation was found between root dry weight and grain yield (0.57**) and biomass (0.84**) under salt stress, underscoring the critical role of root traits in improving yield under saline environments. Simple linear regression analysis further demonstrated that root dry weight significantly influenced grain yield and biomass, explaining 51% and 71% of their variation, respectively. Estimates indicated that each unit increase in root dry weight contributed an additional 0.95 grams to grain yield. Additionally, correlation analyses between performance traits and various salt tolerance indices highlighted the pivotal role of root characteristics in enhancing stress tolerance. Principal component analysis (PCA) effectively played a crucial role in the more precise discrimination of genotypes based on performance traits and salinity tolerance indices, contributed to the convergence of clustering dendrograms derived from tolerance indices in genotype classification pattern. Ultimately, the consistency among these findings facilitated the identification of genotypes exhibiting superior grain yield, root dry weight, and enhanced salinity tolerance.
Conclusion: Root architecture plays a fundamental role in improving salt tolerance in bread wheat. Genotypes with higher root dry weight under salt stress not only maintained acceptable grain yields but also exhibited enhanced biomass production. Therefore, prioritizing root traits in breeding programs represents a promising strategy to enhance yield stability and improve wheat productivity under saline conditions

Keywords

Main Subjects


  1. Gooding, M. (2023). Wheat. In P. Shewry, H. Koksel, and J. Taylor (Eds.), ICC Handbook of 21st Century Cereal Science and Technology 1 edtion. Elsevier, 121-130.
  2. FAO, (2024). Crop Prospects and Food Situation – Triannual Global Report No. 1, March 2024. Rome. Available online: https://doi.org/10.4060/cd0022.
  3. Isayenkov, S.V. & Maathuis, F.J. (2019). Plant salinity stress: many unanswered questions remain. Frontiers in plant science10, 80.
  4. Tarolli, P., Luo, J., Park, E., Barcaccia, G., & Masin, R. (2024). Soil salinization in agriculture: Mitigation and adaptation strategies combining nature-based solutions and bioengineering. Iscience27(2), 1-9.
  5. Zhu, J. K. (2016). Abiotic stress signaling and responses in plants. Cell167(2), 313-324.
  6. Munns, R. (2005). Genes and salt tolerance: bringing them together. New phytologist167(3), 645-663.
  7. Munns, R. & Gilliham, M. (2015). Salinity tolerance of crops–what is the cost?. New phytologist208(3), 668-673.
  8. Safdarian, M., Askari, H., Shariati, J. V., & Nematzadeh, G. (2019). Transcriptional responses of wheat roots inoculated with Arthrobacter nitroguajacolicus to salt stress. Scientific reports9(1), 1792.
  9. Eswar, D., Karuppusamy, R., & Chellamuthu, S. (2021). Drivers of soil salinity and their correlation with climate change. Current Opinion in Environmental Sustainability50, 310-318.
  10. Zhang, J. L. & Shi, H. (2013). Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis research115, 1-22.
  11. Maas, E. V. & Poss, J. A. (1989). Salt sensitivity of wheat at various growth stages. Irrigation Science10, 29-40.
  12. Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology59(1), 651- 681.
  13. Ashraf, M. H. P. J. C. & Harris, P. J. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica51, 163-190.
  14. Francois, L. E., Maas, E. V., Donovan, T. J., & Youngs, V. L. (1986). Effect of salinity on grain yield and quality, vegetative growth, and germination of Semi‐Dwarf and durum wheat1.Agronomy Journal78(6), 1053-1058.
  15. El-Hendawy, S. E., Hu, Y., Yakout, G. M., Awad, A. M., Hafiz, S. E., & Schmidhalter, U. (2005). Evaluating salt tolerance of wheat genotypes using multiple parameters. European journal of agronomy22(3), 243-253.
  16. Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J., & Arora, N. K. (2019). Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in microbiology10, 2791.
  17. Reddy, I. N. B. L., Kim, S. M., Kim, B. K., Yoon, I. S., & Kwon, T. R. (2017). Identification of rice accessions associated with K+/Na+ ratio and salt tolerance based on physiological and molecular responses. Rice Science24(6), 360-364.
  18. Mokarian, K., Maali Amiri, R., Tabatabaee, M. T., & Daneshmand, F. (2021). Response evaluation to salinity stress in some bread wheat genotypes using tolerance indices. Iranian Journal of Field Crop Science52(3), 97-111.
  19. Farid, N. M., Iswoyo, H., & Anshori, M. F. (2024). Utilizing Stress Tolerance Index and Principal Component Analysis for Rice Selection in Hydroponic Drought Screening Based on Physiological Traits. International Journal of Agriculture and Biosciences13(4), 736-743.
  20. Ashraf, M. (2004). Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants199(5), 361-376.
  21. El-Hendawy, S., Al-Suhaibani, N., Mubushar, M., Tahir, M. U., Marey, S., Refay, Y., & Tola, E. (2022). Combining hyperspectral reflectance and multivariate regression models to estimate plant biomass of advanced spring wheat lines in diverse phenological stages under salinity conditions. Applied Sciences12(4), 1983.
  22. Kanbar, A., Toorchi, M., & Shashidhar, H. E. (2009). Relationship between root and yield morphological characters in rainfed low land rice (Oryza sativa L.). Cereal Research Communications37, 261-268.
  23. Shoaib, M., Banerjee, B. P., Hayden, M., & Kant, S. (2022). Roots’ drought adaptive traits in crop improvement. Plants11(17), 2256.
  24. Iqbal, S., Akhtar, J., Naz, T., Riaz, U., Hussain, S., Mazhar, Z., & Iqbal, M. M. (2020). Root morphological adjustments of crops to improve nutrient use efficiency in limited environments. Communications in Soil Science and Plant Analysis51(19), 2452-2465.
  25. Kaysar, M. S., Sarker, U. K., Monira, S., Hossain, M. A., Haque, M. S., Somaddar, U., ... & Uddin, M. R. (2022). Dissecting the relationship between root morphological traits and yield attributes in diverse rice cultivars under subtropical condition. Life12(10), 1519.
  26. Atta, B.M., Mahmood, T., & Trethowan, T.M. (2013). Relationship between root morphology and grain yield of wheat in north-western NSW, Australia. Australian Journal of Crop Science, 7(13), 2108-2115.
  27. Lopes, M. S. & Reynolds, M. P. (2010). Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Functional Plant Biology37(2), 147-156.
  28. Fischer, R. A. & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research29(5), 897-912.
  29. Rosielle, A. A. & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non‐stress environment 1.Crop science21(6), 943-946.
  30. Fernandez, G. C. (1992). Effective selection criteria for assessing plant stress tolerance. In C. G. Kuo, Adaptation of food crops to temperature and water stress, 257–270.
  31. Bouslama, M. & Schapaugh Jr, W. T. (1984). Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance 1. Crop science24(5), 933-937.
  32. Gavuzzi, P., Rizza, F., Palumbo, M., Campanile, R. G., Ricciardi, G. L., & Borghi, B. (1997). Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of plant science77(4), 523-531.
  33. Golestani Araghi, S. & Assad, M. T. (1998). Evaluation of four screening techniques for drought resistance and their relationship to yield reduction ratio in wheat. Euphytica103, 293-299.
  34. Arzani, A. (2008). Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cellular & Developmental Biology-Plant44, 373-383.
  35. Cuartero, J., Bolarin, M. C., Moreno, V., & Pineda, B. (2009). Molecular tools for enhancing salinity tolerance in plants. Molecular Techniques in Crop Improvement: 2nd Edition, 373-405.
  36. Zhou, Y., Feng, C., Wang, Y., Yun, C., Zou, X., Cheng, N., Zhang, W., Jing, Y. & Li, H. (2024). Understanding of plant salt tolerance mechanisms and application to molecular breeding. International Journal of Molecular Sciences25(20), 10940.
  37. Gregoria, G. B., Senadhira, D., & Mendoza, R. D. (1997). Screening rice for salinity tolerance. IRRI Discussion Paper 22, 1–30. International Rice Research Institute, Los Baños. Laguna, Philippines.
  38. Pour‐Aboughadareh, A., Yousefian, M., Moradkhani, H., Moghaddam Vahed, M., Poczai, P., & Siddique, K. H. (2019). iPASTIC: An online toolkit to estimate plant abiotic stress indices. Applications in plant sciences7(7), e11278.
  39. Fischer, R. A. & Wood, J. T. (1979). Drought resistance in spring wheat cultivars. III. Yield associations with morpho-physiological traits. Australian Journal of Agricultural Research30(6), 1001-1020.
  40. Bouslama, M. & Schapaugh Jr, W. T. (1984). Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance 1. Crop science24(5), 933-937.
  41. Karimzadeh, H., Borzouei, A., Naserian, B., Tabatabaee, S. A., & Rahemi, M. R. (2023). Investigating the response mechanisms of bread wheat mutants to salt stress. Scientific Reports13(1), 18605.
  42. Mansour, E., Moustafa, E. S., Abdul-Hamid, M. I., Ash-shormillesy, S. M., Merwad, A. R. M., Wafa, H. A., & Igartua, E. (2021). Field responses of barley genotypes across a salinity gradient in an arid Mediterranean environment. Agricultural Water Management258, 107206.
  43. Shahsavand Hassani, H., Roudbari, Z., Mohammadi-Nejad, G., & Esmaeilzadeh-Moghaddam, M. (2021). Study the morphophysiological responses of promising Iranian new and natural trans chromsomal secondary tritipyrum cereal lines to Salinity conditions in Iran. Iranian Journal of Field Crop Science52(1), 75-86.
  44. Khan, M.M., Rahman, M.M., Hasan, M.M., Amin, M.F., Matin, M.Q.I., Faruq, G., Alkeridis, L.A., Gaber, A. & Hossain, A. (2024). Assessment of the salt tolerance of diverse bread wheat (Triticum aestivum L.) genotypes during the early growth stage under hydroponic culture conditions. Heliyon10(7), e29042.
  45. Manhou, K., Moussadek, R., Yachou, H., Zouahri, A., Douaik, A., Hilal, I., Ghanimi, A., Hmouni, D. & Dakak, H. (2024). Assessing the Impact of Saline Irrigation Water on Durum Wheat (cv. Faraj) Grown on Sandy and Clay Soils. Agronomy14(12), 2865.
  46. Afzal, I., Basra, S. M. A., Cheema, M. A., Farooq, M., Jafar, M. Z., Shahid, M., & Yasmeen, A. (2013). Seed priming: A shotgun approach for alleviation of salt stress in wheat. International Journal of Agriculture and Biology15(6), 1199-1203.
  47. Dadshani, S., Sharma, R. C., Baum, M., Ogbonnaya, F. C., Leon, J., & Ballvora, A. (2019). Multi-dimensional evaluation of response to salt stress in wheat. PloS one14(9), e0222659.
  48. Akbari Ghogdi, E., Izadi-Darbandi, A., Borzouei, A., & Majdabadi, A. (2011). Evaluation of morphological changes in some wheat genotypes under salt stress. Journal of Soil and Plant Interactions-Isfahan University of Technology1(4), 71-83.
  49. Shamuyarira, K. W., Shimelis, H., Figlan, S., & Chaplot, V. (2023). Combining ability analysis of yield and biomass allocation related traits in newly developed wheat populations. Scientific Reports13(1), 11832.
  50. Akbarpour, O. A., Dehghani, H., & Rousta, M. J. (2015). Evaluation of salt stress of Iranian wheat germplasm under field conditions. Crop and Pasture Science66(8), 770-781.
  51. Farshadfar, E., Zamani, M., Motallebi, M., & Imamjomeh, A. (2001). Selection for drought resistance in chickpea lines. Iranian Journal of Agricultural Sciences, 32(1): 65-77 [In Persian].
  52. Bakhshi, B., Taghi Tabatabaei, S. M., Naroui Rad, M. R., & Masoudi, B. (2021). Identification of salt tolerant genotypes in wheat using stress tolerance indices. bioRxiv,2021-02, 1-23.
  53. Arazmjoo, E. & Amini Sefidab, A. (2024). Investigation of agronomic traits, dry matter remobilization and stress indices in promising bread wheat genotypes under salinity stress. Journal of Central European Agriculture25(1), 94-109.
  54. Shafi, S., Shafi, I., Zaffar, A., Zargar, S.M., Shikari, A.B., Ranjan, A., Prasad, P.V. & Sofi, P.A. (2023). The resilience of rice under water stress will be driven by better roots: Evidence from root phenotyping, physiological, and yield experiments. Plant Stress10, 100211.
  55. Iqbal, M. A., Rahim, J., Naeem, W., Hassan, S., Khattab, Y., & El-Sabagh, A. (2021). Rainfed winter wheat (Triticum aestivum L.) cultivars respond differently to integrated fertilization in Pakistan. Fresenius Environ. Bull30(4), 3115-3121.
  56. Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought—from genes to the whole plant. Functional plant biology30(3), 239-264.
  57. Munns, R. (2002). Comparative physiology of salt and water stress. Plant, cell & environment25(2), 239-250.
  58. Nouri, A., Etminan, A., Teixeira da Silva, J. A., & Mohammadi, R. (2011). Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turjidum var. durum Desf.). Australian journal of crop science5(1), 8-16.
  59. Hussain, N., Sohail, Y., Shakeel, N., Javed, M., Bano, H., Gul, H.S., Zafar, Z.U., Frahat Zaky Hassan, I., Ghaffar, A., Athar, H.U.R. & Ajaj, R. (2022). Role of mineral nutrients, antioxidants, osmotic adjustment and PSII stability in salt tolerance of contrasting wheat genotypes. Scientific Reports12(1), 12677.
  60. Talebi Qormik, R., Alipour, H., & Darvishzadeh, R. (2024). Salinity stress tolerance in Iranian spring wheat cultivars during germination. Iranian Journal of Seed Research11(1), 129-143.
  61. Mubushar, M., El-Hendawy, S., Tahir, M. U., Alotaibi, M., Mohammed, N., Refay, Y., & Tola, E. (2022). Assessing the suitability of multivariate analysis for stress tolerance indices, biomass, and grain yield for detecting salt tolerance in advanced spring wheat lines irrigated with saline water under field conditions. Agronomy12(12), 3084.
  62. Ravari, S. Z., Dehghani, H., & Naghavi, H. (2016). Assessing salinity tolerance of bread wheat varieties using tolerance indices based on K+/Na+ ratio of flag leaf. Cereal Research, 6(2), 133-144.
  63. Hosseini, S. J., Sarvestani, Z. T., & Pirdashti, H. (2012). Analysis of tolerance indices in some rice (Oryza sativa L.) genotypes at salt stress condition. International Research Journal of Applied and Basic Sciences3(1), 1-10.
  64. Moustafa, E. S., Ali, M. M., Kamara, M. M., Awad, M. F., Hassanin, A. A., & Mansour, E. (2021). Field screening of wheat advanced lines for salinity tolerance. Agronomy11(2), 281.