Effect of drought stress and different amounts of biochar on yield and yield components of quinoa (Chenopodium quinoa Willd.)

Document Type : Complete scientific research article

Authors

1 PhD student in Crop Plant Physiology, Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran,

2 Professor, Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran,

Abstract

ABSTRACT
Background and Objectives:
Water scarcity and recurrent droughts pose significant challenges to agriculture in arid and semi-arid regions. Utilizing resilient crops, such as quinoa (Chenopodium quinoa Willd.), and soil amendments like biochar are effective strategies to sustain agricultural productivity. Quinoa, known for its drought and salinity tolerance and high nutritional value, is a strategic crop for such regions. Additionally, biochar, as a soil amendment, improves soil physical and chemical properties, water retention, and mitigates the effects of deficit irrigation. This study aimed to investigate the effects of pistachio shell biochar and deficit irrigation at different growth stages on yield, yield components, and grain quality of quinoa.
Materials and Methods:
This experiment was conducted in a factorial arrangement within a completely randomized design with four replications in 2022 at the Ferdowsi University of Mashhad research greenhouse. Treatments included five irrigation levels (full irrigation and 50% field capacity during vegetative, flowering, grain filling, and the entire growth period) and three biochar levels (0, 10, and 20 t.h-1). Parameters such as plant height, grain weight per pot, biological weight per pot, thousand-grain weight, and grain quality traits (protein, oil, and ash content) were measured.
Results:
Full-season deficit irrigation reduced grain weight per pot by 60% and plant height by 25.9%. Yield reductions at deficit irrigation during vegetative, flowering, and grain filling stages were 14.5%, 25.3%, and 17.8%, respectively. Additionally, plant height decreased by 11.7% and 23.5% at deficit irrigation during flowering and grain filling stages, respectively. Biochar application mitigated these negative effects, increasing plant height by 18.7% and 23.5% at 10 and 20 t/h, respectively. In addition to improving height, biochar application also significantly increased grain weight per pot by 28.8% and 54.8% at 10 and 20 t/h. Also, 10 and 20 t/h of biochar resulted in an increase of 7.9% and 2.6% (grain protein) and 20.8% and 7.3% (grain oil). Correlation analysis revealed strong positive relationships between grain weight per pot with biological weight per pot (r=0.87), grain oil (r=0.69) and ash content (r=0.66).
Conclusion:
Pistachio shell biochar effectively reduced the negative effects of deficit irrigation on plant height, yield, and grain quality. The improvement in grain weight and quality of quinoa highlights biochar’s potential as a sustainable strategy for water resource management and crop production under drought conditions. Further research is recommended to explore the long-term and field-scale impacts of biochar on soil properties and quinoa growth in arid regions.

Keywords

Main Subjects


  1. Hudson, A. R., Peters, D. P., Blair, J. M., Childers, D. L., Doran, P. T., Geil, K., Gooseff, M., Gross, K. L., Haddad, N. M., & Pastore, M. A. (2022). Cross-site comparisons of dryland ecosystem response to climate change in the US Long-Term Ecological Research Network. BioScience, 72(9), 889-907. https://doi.org/https://doi.org/10.1093/biosci/biab134
  2. Ohba, M. (2021). Precipitation under climate change. In Precipitation (pp. 21-51). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-822699-5.00002-1
  3. Daramola, M. T., & Xu, M. (2022). Recent changes in global dryland temperature and precipitation. International Journal of Climatology, 2, 1267-1282. https://doi.org/https://doi.org/10.1002/joc.7301
  4. Kheyruri, Y., Neshat, A., Sharafati, A., & Hameed, A. S. (2024). Identifying the most effective climate parameters on crop yield in rain-fed agriculture and irrigated farming in Iran. Physics and Chemistry of the Earth, Parts A/B/C, 136, 103744. https://doi.org/https://doi.org/10.1016/j.pce.2024.103744
  5. Safdari, Z., Nahavandchi, H., & Joodaki, G. (2022). Estimation of groundwater depletion in Iran’s catchments using well data. Water, 14(1), 131. https://doi.org/https://doi.org/10.3390/w14010131
  6. Emadodin, I., Reinsch, T., & Taube, F. (2019). Drought and desertification in Iran. Hydrology, 6(3), 66. https://doi.org/10.3390/hydrology6030066
  7. Bazile, D., Bertero, H. D., & Nieto, C. (2015). State of the Art Report on Quinoa around the World in 2013 (1 ed.). FAO & CIRAD.
  8. Ruiz, K. B., Biondi, S., Oses, R., Acuña-Rodríguez, I. S., Antognoni, F., Martinez-Mosqueira, E. A., Coulibaly, A., Canahua-Murillo, A., Pinto, M., & Zurita-Silva, A. (2014). Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for sustainable development, 34, 349-359. https://doi.org/https://doi.org/10.1007/s13593-013-0195-0
  9. Geerts, S., Raes, D., Garcia, M., Vacher, J., Mamani, R., Mendoza, J., Huanca, R., Morales, B., Miranda, R., & Cusicanqui, J. (2008). Introducing deficit irrigation to stabilize yields of quinoa (Chenopodium quinoa Willd.). European journal of agronomy, 28(3), 427-436. https://doi.org/10.1016/j.eja.2007.11.008
  10. Talebnejad, R., & Sepaskhah, A. (2015). Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa. Agricultural Water Management, 159, 225-238. https://doi.org/10.1016/j.agwat.2015.06.005
  11. Jokarfard, V., Rabiei, B., Laki, E. S., & Börner, A. (2024). Stability and adaptability of grain yield in quinoa genotypes in four locations of Iran. Frontiers in Plant Science, 15, 1487106. https://doi.org/https://doi.org/10.3389/fpls.2024.1487106
  12. Bagheri, M., Anafjeh, Z., Taherian, M., Emami, A., Molaie, A., & Keshavarz, S. (2021). Assessment of adaptability and seed yield stability of selected quinoa (Chenopodium quinoa Willd.) genotypes in spring cropping systems in cold and temperate regions of Iran. IRANIAN JOURNAL OF CROP SCIENCES, 22(4), 376-387 [In Persian]. https://doi.org/https://doi.org/10.52547/abj.22.4.376
  13. Etaati, M., Ardakani, M. R., Bagheri, M., Paknejad, F., & Golzardi, F. (2023). Grain yield adaptability and stability of quinoa (Chenopodium quinoa Willd.) genotypes using different stability indices. Journal of Crop Ecophysiology, 17(65), 1-14 [In Persian]. https://doi.org/https://doi.org/10.30495/JCEP.2023.1935024.1815
  14. Mamedi, A., Tavakkol Afshari, R., & Oveisi, M. (2017). Cardinal temperatures for seed germination of three quinoa (Chenopodium quinoa Willd.) cultivars. Iranian Journal of Field Crop Science, 48(Special Issue), 89-100 [In Persian]. https://doi.org/https://doi.org/10.22059/ijfcs.2017.206204.654106
  15. Sigstad, E. E., & Prado, F. E. (1999). A microcalorimetric study of Chenopodium quinoa Willd. seed germination. Thermochimica acta, 326(1-2), 159-164. https://doi.org/https://doi.org/10.1016/S0040-6031(98)00599-1
  16. Ghorbani, K., & Jamali, S. (2021). The effects of irrigation with different mixture Caspian seawater and fresh water on yield of quinoa (cv Sajama) in greenhouse conditions. Journal of Water and Soil Conservation, 28(2), 63-81 [In Persian]. https://doi.org/https://doi.org/10.22069/jwsc.2021.18372.3397
  17. Shadmehri, A., & Abbas Dokht, H. (2024). Assessing the Interactive Effects of Priming and Drought Stress on Yield and Selected Growth Characteristics of Three Quinoa (Chenopodium quinoa Willd) Cultivars. Journal of Medicinal plants and By-Products. https://doi.org/https://doi.org/10.22034/jmpb.2024.366987.1758
  18. Vacher, J.-J. (1998). Responses of two main Andean crops, quinoa (Chenopodium quinoa Willd) and papa amarga (Solanum juzepczukii Buk.) to drought on the Bolivian Altiplano: Significance of local adaptation. Agriculture, ecosystems & environment, 68(1-2), 99-108. https://doi.org/https://doi.org/10.1016/S0167-8809(97)00140-0
  19. Akram, M. Z., Libutti, A., & Rivelli, A. R. (2023). Evaluation of vegetative development of quinoa under water stress by applying different organic amendments. Agronomy, 13(5), 1412. https://doi.org/https://doi.org/10.3390/agronomy13051412
  20. Fathi Gerdelidani, A., & Mirsyd Hosseini, H. (2014). Different aspects of the effects of biochar in improving soil quality. International Conference on Applied Research in Agriculture, Iran [In Persian]. https://civilica.com/doc/414849
  21. Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems–a review. Mitigation and adaptation strategies for global change, 11(2), 403-427. https://doi.org/10.1007/s11027-005-9006-5
  22. Briggs, C. M., Breiner, J., & Graham, R. (2005). Contributions of Pinus Ponderosa charcoal to soil chemical and physical properties. The ASACSSA-SSSA International Annual Meetings. Salt Lake City, USA https://doi.org/10.1137/1.9780898717914.ch1,
  23. Gaskin, J. W., Speir, R. A., Harris, K., Das, K., Lee, R. D., Morris, L. A., & Fisher, D. S. (2010). Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102(2), 623-633. https://doi.org/10.2134/agronj2009.0083
  24. Kammann, C. I., Linsel, S., Gößling, J. W., & Koyro, H.-W. (2011). Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant and soil, 345(1), 195-210. https://doi.org/10.1007/s11104-011-0771-5
  25. Tourajzadeh, O., Piri, H., Naserin, A., & mahdi Cahri, M. (2024). Effect of nano biochar addition and deficit irrigation on growth, physiology and water productivity of quinoa plants under salinity conditions. Environmental and experimental botany, 217, 105564. https://doi.org/10.1016/j.envexpbot.2023.105564
  26. Abbas, G., Abrar, M. M., Naeem, M. A., Siddiqui, M. H., Ali, H. M., Li, Y., Ahmed, K., Sun, N., & Xu, M. (2022). Biochar increases salt tolerance and grain yield of quinoa on saline-sodic soil: multivariate comparison of physiological and oxidative stress attributes. Journal of soils and sediments, 22(5), 1446-1459. https://doi.org/10.1007/s11368-022-03159-2
  27. Derbali, I., Derbali, W., Gharred, J., Manaa, A., Slama, I., & Koyro, H.-W. (2023). Mitigating salinity stress in Quinoa (Chenopodium quinoa Willd.) With Biochar and Superabsorber Polymer amendments. Plants, 13(1), 92. https://doi.org/10.3390/plants13010092
  28. Yang, A., Akhtar, S. S., Li, L., Fu, Q., Li, Q., Naeem, M. A., He, X., Zhang, Z., & Jacobsen, S.-E. (2020). Biochar mitigates combined effects of drought and salinity stress in quinoa. Agronomy, 10(6), 912. https://doi.org/10.3390/agronomy10060912
  29. Turan, V. (2019). Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce. Ecotoxicology and environmental safety, 183, 109594. https://doi.org/10.1016/j.ecoenv.2019.109594
  30. Miri, F., Zamani, J., & Zarebanadkouki, M. (2021). The Effect of Different Levels of Pistachio Harvesting Wastes Biochar on Growth and Water Productivity of Maize (Zea mays L.). Iranian Journal of Soil and Water Research, 52(1), 227-236 [In Persian]. https://doi.org/10.22059/IJSWR.2020.312593.668779
  31. Arab Bafrani, Z., Ghanei-Bafghi, M.-J., & Shirmardi, M. (2020). Effect of wood residues of pistachio biochar on growth characteristics of Safflower. Journal of Soil Management and Sustainable Production, 10(3), 73-94. https://doi.org/10.22069/EJSMS.2021.17831.1937
  32. Sosa‐Zuniga, V., Brito, V., Fuentes, F., & Steinfort, U. (2017). Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Annals of Applied Biology, 171(1), 117-124. https://doi.org/https://doi.org/10.1111/aab.12358
  33. Abbaspour, F., Asghari, H., Moghaddam, P. R., Abbasdokht, H., Shabahang, J., & Babaei, A. B. (2019). Effects of biochar on soil fertility and water use efficiency of black seed (Nigella sativa L.) under water stress conditions. Iranian Journal of Field and Crop Research, 17(1), 39-52 [In Persian]. https://doi.org/https://doi.org/10.22067/gsc.v17i1.63344
  34. Ghias, S., Shirmardi, M., Meftahizadeh, H., & Dehestani Ardakani, M. (2022). Effect of Biochar and Hydrogel on Morphophysiological and Biochemical Characteristics of Common Sage (Salvia officinalis L.) under Drought Stress. Plant Productions, 45(1), 67-80 [In Persian]. https://doi.org/https://doi.org/10.22055/ppd.2021.36030.1962
  35. Mir, E., Piri, H., & Naserin, A. (2021). Effects of different levels of wheat biochar and water stress on quantitative and qualitative characteristics of Carla (Bitter Melon) in potted conditions. Journal of Water Research in Agriculture, 35(2), 169-185 [In Persian]. https://doi.org/https://doi.org/10.22092/jwra.2021.352930.845
  36. Naeem, M. B., Jahan, S., Rashid, A., Shah, A. A., Raja, V., & El-Sheikh, M. A. (2024). Improving maize yield and drought tolerance in field conditions through activated biochar application. Scientific Reports, 14(1), 25000. https://doi.org/https://doi.org/10.1038/s41598-024-76082-w
  37. Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., & Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48(3), 271-284. https://doi.org/10.1007/s00374-011-0624-7
  38. Liu, W.-J., Jiang, H., & Yu, H.-Q. (2015). Development of biochar-based functional materials: toward a sustainable platform carbon material. Chemical reviews, 115(22), 12251-12285. https://doi.org/https://doi.org/10.1021/acs.chemrev.5b00195
  39. parsa, m., Kamaei, R., & yousefi, b. (2022). Effect of chemical and biological fertilizers on the physiological characteristics and activity of some antioxidant enzymes of peppermint (Mentha piperita) under drought stress conditions. Journal of Plant Research (Iranian Journal of Biology), 35(4), 657-673 [In Persian]. https://doi.org/https://dor.isc.ac/dor/20.1001.1.23832592.1401.35.4.12.2
  40. Comegna, A., Dragonetti, G., Kodesova, R., & Coppola, A. (2022). Impact of olive mill wastewater (OMW) on the soil hydraulic and solute transport properties. International Journal of Environmental Science and Technology, 19(8), 7079-7092. https://doi.org/https://doi.org/10.1007/s13762-021-03630-6
  41. Villoro, A., Latorre, B., Tormo, J., Jiménez, J. J., López, M. V., Nicolau, J. M., Vicente, J., Gracia, R., & Moret-Fernández, D. (2021). A TDR wireless device for volumetric water content sensing. Computers and electronics in agriculture, 181, 105939. https://doi.org/https://doi.org/10.1016/j.compag.2020.105939
  42. Comegna, A., Coppola, A., Dragonetti, G., & Sommella, A. (2016). Estimating nonaqueous-phase liquid content in variably saturated soils using time domain reflectometry. Vadose Zone Journal, 15(5), vzj2015. 2011.0145. https://doi.org/https://doi.org/10.2136/vzj2015.11.0145
  43. Comegna, A., Severino, G., & Coppola, A. (2022). A review of new TDR applications for measuring non-aqueous phase liquids (NAPLs) in soils. Environmental Advances, 9, 100296. https://doi.org/https://doi.org/10.1016/j.envadv.2022.100296
  44. Moret-Fernández, D., Lera, F., Latorre, B., Tormo, J., & Revilla, J. (2022). Testing of a commercial vector network analyzer as low-cost TDR device to measure soil moisture and electrical conductivity. Catena, 218, 106540. https://doi.org/https://doi.org/10.1016/j.catena.2022.106540
  45. Pérez, M., Mendez, D., Avellaneda, D., Fajardo, A., & Páez-Rueda, C. I. (2023). Time-domain transmission sensor system for on-site dielectric permittivity measurements in soil: A compact, low-cost and stand-alone solution. HardwareX, 13, e00398. https://doi.org/https://doi.org/10.1016/j.ohx.2023.e00398
  46. Seibel, W. (1989). Approved Methods. American Association of Cereal Chemists, St. Paul, MN, USA. Methods. https://doi.org/https://doi.org/10.1002/star.19890411114
  47. AOAC. (1995). Official Association of Official Analytical Chemists, St. Paul, MN, USA. Methods. (16th ed., Vol. 1). AOAC International.
  48. Haider, I., Raza, M. A. S., Iqbal, R., Aslam, M. U., Habib-ur-Rahman, M., Raja, S., Khan, M. T., Aslam, M. M., Waqas, M., & Ahmad, S. (2020). Potential effects of biochar application on mitigating the drought stress implications on wheat (Triticum aestivum L.) under various growth stages. Journal of Saudi Chemical Society, 24(12), 974-981. https://doi.org/10.1016/j.jscs.2020.10.005
  49. Rivelli, A. R., Akram, M. Z., & Libutti, A. (2023). Woody Biochar Rate and Water Shortage Impact on Early Growth Stages of Chenopodium quinoa Willd. Agronomy, 14(1), 53. https://doi.org/10.3390/agronomy14010053
  50. Al-Naggar, A., Abd El-Salam, R., Badran, A., & El-Moghazi, M. (2017). Genotype and drought effects on morphological, physiological and yield traits of quinoa (Chenopodium quinoa Willd.). Asian J. Adv. Agric. Res, 3(1), 1-15. https://doi.org/10.9734/AJAAR/2017/36655
  51. Hirich, A., Choukr-Allah, R., & Jacobsen, S.-E. (2014). The combined effect of deficit irrigation by treated wastewater and organic amendment on quinoa (Chenopodium quinoa Willd.) productivity. Desalination and Water Treatment, 52(10-12), 2208-2213. https://doi.org/10.1080/19443994.2013.777944
  52. Sun, Y., Liu, F., Bendevis, M., Shabala, S., & Jacobsen, S. E. (2014). Sensitivity of two quinoa (ChenopodiumquinoaWilld.) varieties to progressive drought stress. Journal of Agronomy and Crop Science, 200(1), 12-23. https://doi.org/10.1111/jac.12042
  53. Yang, A., Akhtar, S., Amjad, M., Iqbal, S., & Jacobsen, S. E. (2016). Growth and physiological responses of quinoa to drought and temperature stress. Journal of Agronomy and Crop Science, 202(6), 445-453. https://doi.org/10.1111/jac.12167
  54. Naderi, M., Noormohammadi, G., Majidi, I., Darvish, F., Shirani Rad, A. H., & Madani, H. (2005). Evaluation of summer safflower response to different intensities of drought stress in Isfahan region. IRANIAN JOURNAL OF CROP SCIENCES, 7(3), 212-225 [In Persian]. https://doi.org/https://dor.isc.ac/dor/20.1001.1.15625540.1384.7.3.3.9
  55. Akram, M. Z., Libutti, A., & Rivelli, A. R. (2024). Drought stress in quinoa: Effects, responsive mechanisms, and management through biochar amended soil: A review. Agriculture, 14(8), 1418. https://doi.org/https://doi.org/10.3390/agriculture14081418
  56. Dong, D., Feng, Q., Mcgrouther, K., Yang, M., Wang, H., & Wu, W. (2015). Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. Journal of soils and sediments, 15, 153-162. https://doi.org/https://doi.org/10.1007/s11368-014-0984-3
  57. Zhang, W., Niu, W., & Luo, H. (2024). Effect of Biochar Amendment on the Growth and Photosynthetic Traits of Plants Under Drought Stress: A Meta-Analysis. Agronomy, 14(12), 2952. https://doi.org/https://doi.org/10.3390/agronomy14122952
  58. Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., Skjemstad, J. O., Thies, J., Luizão, F. J., & Petersen, J. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719-1730. https://doi.org/https://doi.org/10.2136/sssaj2005.0383
  59. Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macêdo, J. L. V., Blum, W. E., & Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and soil, 291, 275-290. https://doi.org/10.1007/s11104-007-9193-9
  60. Sanchez, H. B., Lemeur, R., Damme, P. V., & Jacobsen, S.-E. (2003). Ecophysiological analysis of drought and salinity stress of quinoa (Chenopodium quinoa Willd.). Food Reviews International, 19(1-2), 111-119. https://doi.org/10.1081/FRI-120018874
  61. Akram, M. Z., Rivelli, A. R., Libutti, A., Liu, F., & Andreasen, C. (2024). Mitigation of drought stress for Quinoa (Chenopodium quinoa Willd.) varieties using woodchip biochar-amended soil. Plants, 13(16), 2279. https://doi.org/https://doi.org/10.3390/plants13162279
  62. Mbave, Z. A. (2013). Water stress effects on growth, yield and quality of wheat (Triticum aestivum L.) [Ph.D. Theses, University of Pretoria].
  63. Sarvestani, Z. T., Pirdashti, H., Sanavy, S., & Balouchi, H. (2008). Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars. Pakistan journal of biological sciences: PJBS, 11(10), 1303-1309. https://doi.org/10.3923/pjbs.2008.1303.1309
  64. Clarke, J. M., Townley‐Smith, F., McCaig, T. N., & Green, D. G. (1984). Growth Analysis of Spring Wheat Cultivars of Varying Drought Resistance. Crop Science, 24(3), 537-541. https://doi.org/10.2135/cropsci1984.0011183X002400030026x
  65. Gebremedhin, G., Bereket, H., Daniel, B., & Tesfaye, B. (2015). Effect of biochar on yield and yield components of wheat and post-harvest soil properties in Tigray, Ethiopia. J Fertil Pestic, 6(158), 2. https://doi.org/10.4172/2471-2728.1000158
  66. Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Agronomic values of greenwaste biochar as a soil amendment. Soil Research, 45(8), 629-634. https://doi.org/10.1071/SR07109
  67. Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 158, 61-68. https://doi.org/10.1016/j.agwat.2015.04.010
  68. Daraei, E., Bayat, H., & Gregory, A. S. (2024). Impact of natural biochar on soil water retention capacity and quinoa plant growth in different soil textures. Soil and Tillage Research, 244, 106281. https://doi.org/https://doi.org/10.1016/j.still.2024.106281
  69. Aslam, M. U., Raza, M. A. S., Saleem, M. F., Waqas, M., Iqbal, R., Ahmad, S., & Haider, I. (2020). Improving strategic growth stage-based drought tolerance in quinoa by rhizobacterial inoculation. Communications in Soil Science and Plant Analysis, 51(7), 853-868. https://doi.org/10.1080/00103624.2020.1744634
  70. Rabbani, J., & Emam, Y. (2011). Yield Response of Maize Hybrids to Drought Stress at Different Growth Stages. Journal of Crop production and processing, 1(2), 65-78 [In Persian]. https://doi.org/http://dorl.net/dor/20.1001.1.22518517.1390.1.2.5.0
  71. Saint Pierre, C., Peterson, C. J., Ross, A. S., Ohm, J. B., Verhoeven, M. C., Larson, M., & Hoefer, B. (2008). White wheat grain quality changes with genotype, nitrogen fertilization, and water stress. Agronomy Journal, 100(2), 414-420. https://doi.org/https://doi.org/10.2134/agronj2007.0166
  72. Ghobadi, M., Bakhshandeh, M., Fathi, G., Gharineh, M., Alami-Said, K., Naderi, A., & Ghobadi, M. (2006). Short and long periods of water stress during different growth stages of canola (Brassica napus L.): effect on yield, yield components, seed oil and protein contents. Journal of Agronomy, 5(2), 336-341. https://doi.org/10.3923/ja.2006.336.341
  73. Ramzani, P. M. A., Shan, L., Anjum, S., Ronggui, H., Iqbal, M., Virk, Z. A., & Kausar, S. (2017). Improved quinoa growth, physiological response, and seed nutritional quality in three soils having different stresses by the application of acidified biochar and compost. Plant Physiology and Biochemistry, 116, 127-138. https://doi.org/10.1016/j.plaphy.2017.05.003
  74. Yadav, G. S., Shivay, Y., Kumar, D., & Babu, S. (2013). Enhancing iron density and uptake in grain and straw of aerobic rice through mulching and rhizo-foliar fertilization of iron. Afr. J. Agric. Res, 8, 5447-5454. https://doi.org/10.5897/AJAR20xx.xxx
  75. Mannan, M., Mia, S., Halder, E., & Dijkstra, F. A. (2021). Biochar application rate does not improve plant water availability in soybean under drought stress. Agricultural Water Management, 253, 106940. https://doi.org/https://doi.org/10.1016/j.agwat.2021.106940
  76. Wu, Y., Wang, X., Zhang, L., Zheng, Y., Liu, X., & Zhang, Y. (2023). The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1163451
  77. Hatzig, S. V., Nuppenau, J.-N., Snowdon, R. J., & Schießl, S. V. (2018). Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.). BMC plant biology, 18, 1-13. https://doi.org/10.1186/s12870-018-1531-y
  78. Aslam, M., Nelson, M., Kailis, S., Bayliss, K., Speijers, J., & Cowling, W. (2009). Canola oil increases in polyunsaturated fatty acids and decreases in oleic acid in drought‐stressed Mediterranean‐type environments. Plant Breeding, 128(4), 348-355. https://doi.org/10.1111/j.1439-0523.2008.01577.x
  79. Alsamadany, H., Alharby, H. F., Al-Zahrani, H. S., Alzahrani, Y. M., Almaghamsi, A. A., Abbas, G., & Farooq, M. A. (2022). Silicon-nanoparticles doped biochar is more effective than biochar for mitigation of arsenic and salinity stress in Quinoa: Insight to human health risk assessment. Frontiers in Plant Science, 13, 989504. https://doi.org/https://doi.org/10.3389/fpls.2022.989504
  80. Khan, S., Irshad, S., Mehmood, K., Hasnain, Z., Nawaz, M., Rais, A., Gul, S., Wahid, M. A., Hashem, A., & Abd_Allah, E. F. (2024). Biochar production and characteristics, its impacts on soil health, crop production, and yield enhancement: A review. Plants, 13(2), 166. https://doi.org/https://doi.org/10.3390/plants13020166
  81. Ghazouani, H., Ibrahimi, K., Amami, R., Helaoui, S., Boughattas, I., Kanzari, S., Milham, P., Ansar, S., & Sher, F. (2023). Integrative effect of activated biochar to reduce water stress impact and enhance antioxidant capacity in crops. Science of the Total Environment, 905, 166950. https://doi.org/10.1016/j.scitotenv.2023.166950