Document Type : Complete scientific research article
Authors
1 Professor, Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran,
2 PhD student in Plant Genetics and Breeding, Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Master's student in Agricultural Biotechnology, Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan,
4 Bachelor's degree student in Cellular and Molecular Biology, Ferdowsi University of Mashhad, Mashhad, Iran.
Abstract
Keywords
Main Subjects
1.Nagajyoti, P., Lee, K., & Sreekanth, T. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental chemistry letters, 8: 199- 216.
2.Tchounwou, P. B., Yedjou, C.G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology: volume 3: environmental toxicology, 133-164.
3.Mahbub K.R., Krishnan, K., Naidu, R., Andrews, S., & Megharaj, M. (2017). Mercury toxicity to terrestrial biota. Ecological Indicators, 74: 451-462.
9.Salehi, M., Kalate, Arabi, M., & Mosavat, S.A. (2014). Evaluation of Genetic Variation in Spring Bread Wheat Genotypes to Salinity in the North of Golestan province. Seed and Plant Improvement Journal, 30, 305-325. [In Persian with English summary].
13.Pfaffl, M.W., Horgan, G.W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic acids research, 30(9): 36.
14.Ibrahim, M., Nawaz, S., Iqbal, K., Rehman, S., Ullah, R., Nawaz, G., ... & Peluso, I. (2022). Plant-derived smoke solution alleviates cellular oxidative stress caused by arsenic and mercury by modulating the cellular antioxidative defense system in wheat. Plants, 11(10), 1379.
15.Sahu, G.K., Upadhyay, S., & Sahoo, B.B. (2011). Mercury induced phytotoxicity and oxidative stress in wheat (Triticum aestivum L.) plants. Physiology and Molecular Biology of Plants, 18(1), 21-31.
16.Chehargani Rad, A., Khorzaman, N., Lari Yazdi, H., & Shirkhani, Z. (2016). Changes in vegetative traits and physiological indicators of bean plants under zinc stress in hydroponic cultivation environment. Developmental Biology, 8(2), 31-39.
17.Parlak, K.U. (2016). Effect of nickel on growth and biochemical characteristics of wheat (Triticum aestivum L.) seedlings. NJAS-Wageningen Journal of Life Sciences,76, 1-5.
18.Farooq, M.A., Hong, Z., Islam, F., Noor, Y., Hannan, F., Zhang, Y., Ayyaz, A., Mwamba, T.M., Zhou, W., & Song, W.(2020). Comprehensive proteomic analysis of arsenic induced toxicity reveals the mechanism of multilevel coordination of efficient defense and energy metabolism in two Brassica napus cultivars. Ecotoxicol Environ Saf, 2020, 208, 111744.
19.Zengin, F.K., & Munzuroglu, O. (2005). Effects of some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biologica Cracoviensia series Botanica, 47(2), 157-164.
20.Cho, U., & Park, J. (2000). Mercury-induced oxidative stress in tomato seedlings. Plant Sciences. 156, 1–9.
21.Shiyab, S., Chen, J., Fengxiang, X.H., David, L.M., Fank, B.M., Mengmeng, G., Yi, S., Motasim, A.M. .(2008). Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.), Environmental Toxicology, 24: 462–471.
22.Hayat, N., Afroz, N., Rehman, S., Bukhari, S.H., Iqbal, K., Khatoon, A., Taimur, N., Sakhi, S., Ahmad, N., & Ullah, R. (2021). Plant-Derived Smoke Ameliorates Salt Stress in Wheat by Enhancing Expressions of Stress-Responsive Genes and Antioxidant Enzymatic Activity. Agronomy, 2021, 12, 28.
23.Stoeva, N., Berova, M., & Zlatev, Z. (2003) Physiological Response of Maize to Arsenic Contamination. Biol Plant, 46, 449–452.
24.Manna, I., & Bandyopadhyay, M. (2017). Engineered Nickel Oxide Nanoparticle Causes Substantial Physicochemical Perturbation in Plants. Front Chem, 5, 92.
25.Sandalio, L.M., Dalurzo, H.C., Gomez, M., Romero-Puertas, M.C., Del Rio, L.A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52(364), 2115-2126.
26.Kaur, G., Singh, H.P., Batish, D.R., & Kumar, R.K. (2012). Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead to soil. Journal of Environmental Biology, 33, 265-269.
27.Noman, A., Ali, S., Naheed, F., Ali, Q., Farid, M., Rizwan, M., & Irshad, M.K. (2015). Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Archives of Agronomy and Soil Science,61: 1659-1672.
28.Zhang, C., Luo, L., Xu, W., & Ledwith, V. (2008). Use of local Moran's I and GIS to identify pollution hotspots of Pb in urban soils of Galway. Ireland. Science of the Total Environment, 398, 212-221.
29.Verma, S., Dubey, R. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science, 164, 645-655.
30.Qiao, K., Fang, C., Chen, B., Liu, Z., Pan, N., Peng, H., Hao, H., Xu, M., Wu, J., &Liu, S., (2020). Molecular characterization, purification, and antioxidant activity of recombinant superoxide dismutase from the Pacific abalone Haliotis discus hannai Ino. World Journal of Microbiology and Biotechnology, 36(8).
31.Ibrahim, M., Nawaz, S., Iqbal, K., Rehman, S., Ullah, R., Nawaz, G., ... & Peluso, I. (2022). Plant-derived smoke solution alleviates cellular oxidative stress caused by arsenic and mercury by modulating the cellular antioxidative defense system in wheat. Plants, 11(10), 1379.
32.Elbaz, A., Wei, Y.Y., Meng, Q., Zheng, Q., & Yang, Z.M. (2020). Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicology , 19, 1285–1293.
33.Gill. M. (2014). Heavy metal stress in plants: a review. International Journal of Advanced Research, 6(2):1043- 1055.
34.Aysin, F., Karaman, A., Yilmaz, A., Aksakal, Ö., Gezgincioğlu, E., & Kohnehshahri, S. M. (2020). Exogenous cysteine alleviates mercury stress by promoting antioxidant defence in maize (Zea mays L.) seedlings. Turkish Journal of Agriculture and Forestry, 44(5), 506-516.
35.Iqbal, M. Vicia faba bioassay for environmental toxicity monitoring: A review. Chemosphere 2015, 144, 785–802.
36.Chen, Y, Zhou, Y., Cai, Y., Feng, Y., Zhong, C., Fang, Z., & Zhang, Y. (2022). De novo transcriptome analysis of high-salinity stress-induced antioxidant activity and plant phytohormone alterations in Sesuvium portulacastrum. Front. Plant Science, 13: 855-995.
37.Raeesi, S.Y., & Jahanbakhsh, S. (2014). The effect of cadmium and mercuric chlorides on some physiological traits of wheat two cultivars. Journal of Crop Production, 7(4), 179-195. [In Persian with English Summary].
38.Aysin, F., Karaman, A., Yilmaz, A., Aksakal, Ö., Gezgincioğlu, E., & Kohnehshahri, S.M. (2020). Exogenous cysteine alleviates mercury stress by promoting antioxidant defence in maize (Zea mays L.) seedlings. Turkish Journal of Agriculture and Forestry, 44(5), 506-516.
39.Lee, S.H., & An, C.S. (2005). Differential expression of three catalase genes in hot pepper (Capsicum annuum L.). Molecules and Cells, 20: 247-255.
40.Sharma, P., Jha, A.B., Dubey, R.S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of botany, 2012(1), 217037.
41.Gajewska, E., & Skłodowska, M. (2007). Differential biochemical responses of wheat shoots and roots to nickel stress: Antioxidative reactions and proline accumulation. Plant Growth Regul, 54, 179–188.
42 Nandita, S., Ma, L.Q., Srivastava, M., & Rathinasabapathi, B. (2006) . Metabolic adaptations to arsenic-induced oxidative stress in Pteris ertici L. and Pteris ensiformis L. Plant Science. 2006, 170, 274–282.
43.Manju, S., Kumar, S., Chakrabarty, D., Trivedi, P.K., Mallick, S., Misra, P., Shukla, D., Mishra, S., Srivastava, S., & Tripathi, R.D. (2009). Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol. Environ. Saf, 72, 1102–1110.
44.Peng, Y., Huang, H., Zhang, Y., Kang, C., Chen, S., Song, L., Liu, D., & Zhong, C. (2018). A versatile MOF-based trap for heavy metal ion capture and dispersion, Nature communications, 9: 187.
45.Malecka ,A., Piechalak, A., Mensinger, A., Hanc,D., Baralkiewicz, D., & Tomaszewska, B. (2012). AntioxidativeDefense System in Pisum sativum Roots Exposed to Heavy Metals (Pb, Cu, Cd, Zn). Polish Journal Environment Studies, 21(6): 1721-30.