Document Type : Complete scientific research article
Authors
1 PhD student in Agriculture, Department of Agriculture, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Associate Professor, Department of Agriculture, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran,
3 Professor, Department of Agriculture, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran,
4 Associate Professor, Department of Agriculture, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
Abstract
Keywords
Main Subjects
6.Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, L., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M. &Toulmin, C. (2010). Food Security: The challenge of feeding 9 billion people. Science, 327, 812–818.
9.Keating, B.A., Herrero, M., Carberry, P.S., Gardner, J. & Cole, M.B. (2014). Food wedges: framing the global food demand and supply challenge towards 2050. Global Food Security, 3, 125–132.
10.Van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P. & Hochman, Z. (2013). Yield gap analysis with local to global relevance. A review. Field Crops Research, 143, 4-17.
11.Lobell, D.B., Cassman, K.G. & Field, C.B. (2009). Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources, 34,179-204.
15.Nehbandani, A., Soltani, A., Zeinali, E. & Hoseini, F. (2017a). Analyzing soybean yield constraints in Gorgan and Aliabad katul using CPA method. Journal of Agroecology, 7(1), 109-123. [In Persian]
16.Nekahi, M.Z., Soltani, A., Siahmarguee, A. & Bagherani, N. (2014). Yield gap associated with crop management in wheat (Case study: Golestan province-Bandar-gaz). Journal of Crop Production, 7(2), 135-156. [In Persian]
17.Hajjarpour, A., Soltani, A. & Torabi, B. (2015). Using boundary line analysis in yield gap studies: Case study of wheat in Gorgan. Journal of Crop Production, 8(4), 183-201. [In Persian]
18.Nehbandani, A., soltani, A., zeinali, E., hoseini, F., shahoseini, A. & mehmandoy, M. (2017b). Soybean (Glycine max L. Merr.) Yield Gap Analysis using Boundary Line Method in Gorgan and Aliabad Katul. Journal of Agroecology, 9(3), 760-776. [In Persian]
19.Torabi, B., Soltani, A., Galeshi, S., Zeinali, E. & Kazemi Korgehei, M. (2013). Ranking factors causing the wheat yield gap in Gorgan. Journal of Crop Production, 6(1), 171-189. [In Persian]
20.Soltani, A., Hajjarpour, A. & Vadez, V. (2016). Analysis of chickpea yield gap and water-limited potential yield in Iran. Field Crops Research, 185, 21-30.
21.Torabi, B., Soltani, A., Galeshi, S. & Zeinali, E. (2011). Assessment of yield gap due to nitrogen management in wheat. Australian Journal of Crop Science, 5, 879-84.
22.dadrasi, A., Torabi, B., Rahimi, A., Soltani, A. & Zeinali, E. (2021). Determination of Potato (Solanum tuberosum L.) Yield Gap in Golestan Province. Journal of Agroecology, 12(4), 613-633.
23.Van Loon, M.P., Deng, N., Grassini, P., Edreira, J.I.R., Wolde-Meskel, E., Baijukya, F., Marrou, H. & Van Ittersum, M.K. (2018). Prospect for increasing grain legume crop production in East Africa. European Journal of Agronomy, 101, 140-148.
24.Nehbandani, A., Soltani, A., Rahemi-Karizaki, A., Dadrasi, A. & Nourbakhsh, F. (2021). Determination of soybean yield gap and potential production in Iran using modeling approach and GIS. Journal of Integrative Agriculture, 20(2), 395-407.
25.Arabameri, R., Soltani, A., Zeinali, E. & Torabi, B. (2021). The amount and How to distribute of chickpea and lentil yield gap in Iran. Journal of Crops Improvement, 23(2), 221-234. [In Persian]
26.Alasti, O., Zeinali, E., Soltani, A. & Torabi, B. (2020). estimation of yield gap and the potential of rainfed barley production increase in Iran. Journal of Crop Production, 13(3), 41-60. [In Persian]
27.Alizadeh Dehkordi, P., Nehbandani, A., Hassanpour-bourkheili, S. & Kamkar, B. (2020). Yield gap analysis using remote sensing and modelling approaches: Wheat in the northwest of Iran. International Journal of Plant Production, 14(3), 443-452. [In Persian]
28.Ashraf Vaghefi, S., Mousavi, S.J., Abbaspour, K.C., Srinivasan, R. & Yang, H. (2014). Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh River Basin in Iran. hydrological processes, 28(4), 2018-2032.
29.Wesseling, J.G. & Feddes, R.A. (2006). Assessing crop water productivity from field to regional scale. Agricultural Water Management, 86(1-2), 30-39.
31.Grassini, P., van Bussel, L.G.J., Van Wart, J., Wolf, J., Claessens, L., Yanga, H., Boogaarde, H., de Groot, H., van Ittersum, M.K. & Cassman, K.G. (2015b). How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Research, 177, 49–63.
32.Van Bussel, L.G.J., Grassini, P., Van Wart, J., Wolf, J., Claessens, L., Yang, H., Boogaard, H., Groot, H.D., Saito, K., Cassman, K.G. & Van Ittersum, M.K. (2015). From field to atlas: upscaling of location-specific yield gap estimates. Field Crops Research, 177, 98–108.
35.Van Wart, J., Van Bussel, L.G., Wolf, J., Licker, R., Grassini, P., Nelson, A., Boogaard, H., Gerber, J., Mueller, N.D., Claessens, L., Van Ittersum, M.K. & Cassman, K.G. (2013). Use of agro-climatic zones to upscale simulated crop yield potential. Field Crop Research, 143, 44–55.
36.Koo, J. & Dimes, J. (2013). HC27 generic soil profile database. http://hdl.handle.net/1902.1/20299, Harvard Data verse, V4.
37.Nehbandani, A., Soltani, A., Naghab, R.T., Dadrasi, A. & Alimagham, S.M. (2020). Assessing HC27 soil database for modeling plant production. International Journal of Plant Production, 14(4), 679-687.
38.Soltani, A., Alimagham, S.M., Nehbandani, A., Torabi, B., Zeinali, E., Dadrasi, A., Zand, E., Ghassemi, S. Pourshirazi, S., Alasti, O., Hosseini, R.S., Zahed, M., Arabameri, R., Mohammadzadeh, Z., Rahban, S., Kamari, H., Fayazi, H., Mohammadi, S., Keramat, S., Vadeze, V., van Ittersum, M.K. & Sinclair, T.R. (2020a). SSM-iCrop2: A simple model for diverse crop species over large areas. Agricultural Systems, 182, 102855.