منابع
1. Arzani, H. 2002. Examination of vegetation indices for vegetation parameters measurements in semi-arid and arid area. The 3rd international Iran and Russia conference (agriculture and natural resources)., 2: 596-603. (In Persian)
2. Asrar, G., Hipps, L.E., and Kanemasu, E.T. 1984. Assessing solar energy and water use efficiencies in winter wheat: A case study. Agri. For. Meteorol., 31)1): 47-58.
3. Bannari, A., Morin, D., Bonn, F., and Huete, A.R. 1995. A review of vegetation indices, Remote Sens. Rev., 13: 95-120.
4. Bao, Y., Gao, W., and Gao, Z. 2009. Estimation of winter wheat biomass based on remote sensing data at various spatial and spectral resolutions. Front. Earth Sci., 3(1): 118–128.
5. Baret, F., and Guyot, G. 1991. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ., 35 (2-3): 161-173.
6. Baret, F., Guyot, G., and Major, D.J. 1989. TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In Geoscience and Remote Sensing Symposium, 1989. IGARSS'89. 12th Canadian symposium on remote sensing. Canada. Pp: 1355-1358.
7. Battude, M., Al Bitar, A., Brut, A., Tallec, T., Huc, M., Cros, J., and Demarez, V. 2017. Modeling water needs and total irrigation depths of maize crop in the south west of France using high spatial and temporal resolution satellite imagery. Agric. Water Manag., 189: 123-136.
8. Broge, B.H., and Mortensen, J.V. 2002. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens. Environ., 81: 45-57.
9. Cho, M.A. 2007. Hyper-spectral remote sensing of biochemical and biophysical parameters: the derivate red-edge" double-peak feature", a nuisance or an opportunity?, PhD Thesis, Wageningen University, The Netherlands, 241p.
10. Coppin, P., Jonckheere, I., nackaerts, K., and Muys, B. 2004. Digital change detection methods in ecosystem monitoring: a review. Int. J. Remote Sens., 25(9): 1565–1596.
11. Crippen, R.E. 1990. Calculating the vegetation index faster. Remote Sens. Environ., 34 (1): 71−73.
12. Dengshen, L. 2006. The potential and challenge of remote sensing based biomass estimation. Int. J. Remote Sens., 27(7): 1297-1328.
13. Elvidge, C.D., and Chen, Z. 1995. Comparison of broad-band and narrow-band red and near-infrared vegetation
indices. Remote Sens. Environ., 54 (1): 38-48.
14. Gilabert, M.A., Gandia, S., and Melia, J. 1996. Analyses of spectral-biophysical relationships for a corn canopy. Remote Sens. Environ., 55 (1): 11-20.
15. Gu, Y., Brown, J., Verdin, J., and Wardlow, A. 2007. A five year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys. Res. Lett., 34: 1-6.
16. Huete, H. 1988. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ., 25: 295-309.
17. Lefsky, M.A., and Cohen, W.B. 2003. Selection of remotely sensed data. In M.A. Wulder and S.E. Franklin (eds.), Remote Sensing of Forest Environments: Concepts and Case studies. Kluwer Academic Publishers, Boston., USA. 13–46.
18. Lillesand, T., Kiefer, R.W., and Chipman, J. 2014. Remote Sensing and Image Interpretation. John Wiley and Sons., 167p.
19. Mkhwanazi, M., Chávez, J.L., and Andales, A.A. 2015. SEBAL-A: A remote sensing ET algorithm that accounts for advection with limited data. Part I: Development and validation. Remote Sens., 7(11): 15046-15067.
20. Mohammadi Ahmad Mahmoudi, E., Kamkar, B., and Abdi, O. 2015. Comparison of geostatistical- and remote sensing data-based methods in wheat yield predication in some of growing stages (A case study: Nemooneh filed, Golestan province). J. Crop Prod., 8 (2): 51-76. (In Persian)
21. Mosleh, M.K, Hasan, Q.K., and Chowdhury, E.H. 2015. Application of remote sensors in mapping rice area and forecasting its production: a review, Sensors., 15: 769-791.
22. Nazari, R., and Kaviani, A. 2016. Comparing the estimates of reference crop evapotranspiration in Qazvin plain using SEBAL and METRIC models. Iran. J. Water Res. Agric., 30(2): 187-199. (In Persian)
23. Pickup, G., Chewings, V.H., and Nelson, D.J. 1993. Estimating changes in vegetation cover over time in arid rangelands using Landsat MSS data. Remote Sens. Environ., 43: 243-263.
24. Rahimi Moghaddam, S. 2018. Early sowing date as a strategy for improvement of maize yield and maize physiological and phonological characteristics in climate change conditions at Kermanshah Province. J. Crop Prod., 10(4): 91-105. (In Persian)
25. Rondeaux, G., Steven, M., and Baret, F. 1996. Optimization of soil- adjusted vegetation indices. Remote Sens. Environ., 55: 98-107.
26. Rouse J.W., Haas, R.H., Deering, D.W., Schell, J.A., and Harlan, J.C. 1974. Monitoring the Vernal Advancement and Retro Gradation (green wave effect) of Natural Vegetation. NASA/GSFC Type III Final Report, Greenbelt, MD., 371p.
27. Sabaghzadeh, S. Zare, M. and Mokhtari, M.H. 2017. Estimation biomass using Landsat satellite images (case study: Merck basin, Birjand). J. Range and Watershed Manag., 69 (4): 907-920. (In Persian)
28. Savage, M.J. 1993. Statistical aspects of model validation. In At Workshop on the field water balance in the modelling of cropping systems, University of Pretoria, South Africa., 227p.
29. Sawasawa, H.L. 2003. Crop yield estimation: Integrating RS, GIS, and management factors. A case study of Birkoor and Kortigiri Mandals, Nizamabad District India, MSc Thesis, ITC, Enschede, The Netherlands.
30. Stehman, S.V. 2004. A critical evaluation of the normalized error matrix in map accuracy assessment. Photogramm. Eng. Remote Sens., 70(6): 743–751.
31. Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ., 8: 127-150.
32. Zhang, H., Chen, H., and Zhou, G. 2012. The model of wheat yield forecast based on modis-ndvi: a case study of xinxiang. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences Congress., 12p.