1. AgMIP, 2013a. Guide for Running AgMIP Climate Scenario Generation Tools with R
in Windows. AgMIP, URL: http://www.agmip.org/wp-content/uploads/2013/
10/Guide-for-Running-AgMIP-Climate-Scenario-Generation-with-R-v2.3.pdf
2. AgMIP, 2013b. The Coordinated Climate-Crop Modeling Project C3MP: An Initiative of the
Agricultural Model Intercomparison and Improvement Project. C3MP Protocols and
Procedures. AgMIP, URL: http://research.agmip.org/
download/attachments/1998899/C3MP+Protocols+v2.pdf
3. Alexandrov, V.A., and Hoogenboom, G. 2000. The impact of climate variability and change
on crop yield in Bulgaria. Agric. For. Meteorol., 104: 315- 327.
4. Araya, A., Hoogenboom, G., Luedeling, E., Hadgu, K.M., Kisekka, I., and Martorano, L.G.
2015. Assessment of maize growth and yield using crop models under present and future
climate in southwestern Ethiopia. Agric. For Meteorol., 214: 252-265.
5. Bannayan, M., Kobayashi, K., Kim, H.Y., Lieffering, M., Okada, M., and Miura, S. 2005.
Modeling the interactive effects of atmospheric CO2 and N on rice growth and yield. Field
Crops Res., 93: 237-251.
6. Collins, M., Knutti, R., Arblaster, J., Dufresne, J.L., Fichefet, T., Friedlingstein, P., Gao, X.,
Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A.J., and
Wehner, M. 2013. Long-term climate change: Projections, commitments and irreversibility.
In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker,
T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Doschung, J., Nauels, A., Xia, Y.,
Bex, V., and Midgley, P.M. Eds. Cambridge University Press, Pp: 1029-1136.
7. Dupuis, I., and Dumas, C. 1990. Influence of temperature stress on in vitro fertilisation and
heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol., 94:
665–670.
8. Eyni Nargeseh, H., Deihimfard, R., Soufizadeh, S., Haghighat, M., and Nouri, O. 2016.
Predicting the impacts of climate change on irrigated wheat yield in Fars province using
APSIM model. EJCP., 8(4): 203-224. (In Persian)
9. Hatfield, J.L., and Prueger, J.H. 2015. Temperature extremes: effect on plant growth and
development. Weather Clim. Extrem., 10: 4-10.
10. Hoogenboom, G., Jones, J.W., Porter, C.H., Wilkens, P.W., Boote, K.J., Batchelor, W.D.,
Hunt, L.A., and Tsuji, G.Y. (Editors). 2003. Decision Support System for Agrotechnology
Transfer Version 4.0. Vol. 1: Overview. University of Hawaii, Honolulu, HI.
11. Huang, J.K., Pray, C., and Rozelle, S. 2002. Enhancing the crops to feed the poor. Nature.,
48: 678– 684.
12. Hulme, M., Barrow, E.M., Arnell, N.W., Harisson, P.A., Jones, T.C., and Dowing, T.E.
1999. Relative impacts of human-induced climate change and natural climate variability.
Nature., 397: 688- 691.
13. IPCC, 2007. Climate change 2007: the physical Science Basis. Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change. Cambridge University Press: Cambridge, UK, and New York, NY, USA, 996p.
14. Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth,
D., Huth, N.I., Hargreaves, J.N.G., Meinke, H., Hochman, Z., McLean, G., Verburg, K.,
Snow, V., Dimes, J.P., Silburn, M., Wang, E., Brown, S., Bristow, K.L., Asseng, S.,
Chapman, S., McCown, R.L., Freebairn, D.M., and Smith, C.J. 2003. An overview of
APSIM, a model designed for farming systems simulation. Eur. J. Agron., 18: 267– 288.
15. Liu, Z., Hubbard, K.G., Lin, X., and Yang, X. 2013. Negative effects of climate warming on
maize yield are reversed by the changing of sowing date and cultivar selection in Northeast
China. Glob. Change Biol., 19 (11): 3481-3492.
16. Mera, R.J., Niyogi, D., Buol, G.S., Wilkerson, G.G., and Semazzi, F.H.M. 2006. Potential
individual versus simultaneous climate change effects on soybean (C3) and maize (C4)
crops: An agrotechnology model based study. Global Planet. Change., 54: 163–182.
17. Meza, F.J., Silva, D., and Vigil, H. 2008. Climate change impacts on irrigated maize in
Mediterranean climates: evaluation of double cropping as an emerging adaptation
alternative. Agric. Sys., 98: 21–30.
18. Ministry of Agriculture Jihad, 2013. Agricultural statistics. Iranian Ministry of Agriculture
Jihad, Department of Planning and Economically, Center of Information and
Communication Technology, first volume, Iran. (In Persian)
19. Moini, S., Javadi, S., and Dehghan Manshadi, M. 2011. Feasibility study of solar energy in
Iran and preparing radiation atlas. Recent Advances in Environment, Energy Systems and
Naval Science. 4th International Conference of Environmental and Geological Science and
Engineering. Greece. 1-7.
20. Moradi, R., Koocheki, A., Nassiri Mahallati, M., and Mansoori, H. 2013. Adaptation
strategies for maize cultivation under climate change in Iran: Irrigation and planting data
management. Mitig. Adapt. Strat. Gl., 18: 265-284.
21. Morison, J.I.L., and Morecroft, M.D. 2006. Plant Growth and Climate Change. Blackwell
Publisher, Oxford, England, 213p.
22. Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, D.P.,
Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A., Mitchell, J.F.B.,
Nakicenovic, N., Riahi, K., Smith, S.J., Stouffer, R.J., Thomson, A.M., Weyant, J.P., and
Wilbanks, T. 2010. The next generation of scenarios for climate change. The next generation
of scenarios for climate change research and assessment. Nature., 463(7282): 747-756.
23. Prescott, J.A. 1940. Evaporation from a water surface in relation to solar radiation. T. Roy.
Soc. South Aust., 64(1): 114-118.
24. R Core Team 2016. R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
25. Rahimi-Moghaddam, S., Deihimfard, R., Soufizadeh, S., Kambouzia, J., Nazariyan
Firuzabadi, F., and Eyni Nargeseh, H. 2015d. The effect of sowing date on grain yield, yield
components and growth physiological indices of six grain maize cultivars in Iran. J.
Agroecology., 5(1): 72- 83 (In Persian)
26. Rahimi-Moghaddam, S., Deihimfard, R., Soufizadeh, S., Kambouzia, J., Nazariyan
Firuzabadi, F., and Eyni Nargeseh, H. 2015c. Determination of genetic coefficients of some
maize (Zea mays L.) cultivars of Iran for application in crop simulation models. Iran. J. Field
Crops Res., 13(2): 328-339. (In Persian)
27. Rahimi-Moghaddam, S., Kambouzia, J., and Deihimfard, R. 2017b. Estimation of
parameters for some dominant maize (Zea mays L.) cultivars of Iran for using in APSIM
mechanistic model. EJCP., 10(1): 129-147. (In Persian)
28. Rahimi-Moghaddam, S., Kambouzia, J., and Deihimfard, R. 2018a. Adaptation strategies to
lessen negative impact of climate change on grain maize under hot climatic conditions: A
model-based assessment. Agric. For. Meteorol., 253: 1-14.
29. Rowhani, P., Lobell, D.B., Linderman, M., and Ramankutty, N. 2011. Climate variability
and crop production in Tanzania. Agric. For. Meteorol., 151: 449-460.
30. Ruane, A.C., Cecil, L.D., and Horton, R.M. 2013. Climate change impact uncertainties for
maize in Panama: farm information, climate projections, and yield sensitivities. Agric. For.
Meteorol., 170: 132–145.
31. Seifert, E. 2014. OriginPro 9.1: Scientific data analysis and graphing software—software
review. J. Chem. Inf. Model., 54: 1552–1552.
32. Wang, J., Wang, E., Luo, Q., and Kirby, M. 2009. Modeling the sensitivity of wheat growth
and water balance to climate change in Southeast Australia. Clim. Change., 96: 79–96.
33. Wayne, G.P. 2013. The beginner’s guide to representative concentration pathways. Skeptical
Sci., URL: http://www.skepticalscience.com/docs/RCP Guide.
34. Wilby, R.L., Charles, S.P., Zorita, E., Timbal, B., Whetton, P., and Mearns, L.O. 2004.
Guidelines for use of climate scenarios developed from statistical downscaling methods.
Supporting material of the Intergovernmental Panel on Climate Change, available from the
DDC of IPCC TGCIA. Aug 27.
35. Zheng, B., Chenu, K., Dreccer, M.F., and Chapman, S.C. 2012. Breeding for the future: what
are the potential impacts of future frost and heat events on sowing and flowering time
requirements for Australian bread wheat (Triticum aestivium) varieties? Glob. Change Biol.,
18: 2899–2914.