Effects of different levels of vermicompost on morphophysiological and essential oil characteristics of Peppermint (Mentha piperita L.) under water deficit regimes

Document Type : Research Paper

Abstract

Background and objectives: Drought is one of the most important factors limiting plant growth around the world. So it can be used minimum water with using natural fertilizer such as vermicompost and can be caused to reduce water evaporation from soil, protect and storage water in the soil. The interest in plant products has increased considerably all over the world because many herbal medicines are free from side effects since most medicinal plants are consumed raw, proper management of crop production is
needed to achieve high quality plants. So in this regard, experiment was done to study the effect of different levels of vermicompost on morphophysiological and essential oil characteristics of Peppermint (Mentha piperita L.) under water deficit regimes.
Materials and methods: A pot experiment was conducted as factorial based on completely randomized design with three replications at Gorgan University of Agricultural Sciences and Natural Resources greenhouse during 2016. Treatments were included Irrigation regimes in three levels (100 percent FC, control, 75percent FC and 50percent FC) and vermicompost in three levels (0, 20 and 40percent volumetric). Studied traits were included plant height, internodes distance, fresh and dry weight, number of tillers, leaf water ratio, proline, soluble sugar and essential oil percent. After planting, harvesting and growth characteristics, essential oil, soluble sugar and proline were evaluated with Clevenger, the method of Omokolo and the method of Bates, respectively.
Results: The results showed that internodes distance, fresh and dry weight of shoot, number of tiller and leaf water ratio, were decreased by increasing drought stress. Also, with increasing drought stress, leaf water ratio decreased (2.13 percent) and prolin, soluble sugar and essential oil percent were increased 0.72, 10, 14 and 0.13 percent, respectively. Vermicompost had significant effects on all of morphological and physiological characteristic and this effect was the highest in 40 percent volumetric. Interaction effects of Irrigation regime and vermicompost had significant effects on all of morphological and physiological characteristic except of fresh weight of shoot and number of tillers. Essential oil (0.33 percent) and leaf water ratio (23.71 percent) increased in 40 percent volumetric in 50 percent FC.
Conclusion: Due to the results, it be expressed to reduce chemical fertilities use and achieve to sustainable agriculture, can be adjusted with vermicompost application a lot of part from drought stress effects on Peppermint. Generally, the results showed that by vermicompost application (40 percent volumetric) reduced drought damage on growth characteristics and the most essential oil.

Keywords

Main Subjects


1.Afzal, A., Ashraf, M., Asad, S.A., and Farooq, M. 2005. Effect of phosphate solubilizing
microorganisms on phosphorus uptake, yield and yield traits of wheat (Triticum aestivum L.)
in rainfed area. Int. J. Agric. Biol., 7: 207-209.
2.Amiri, M.B., Rezvani Moghaddam, P., Ghorbani, R., Fallahi, J., and FallahPoor, F. 2009.
Effects of biofertilizers on seedling growth of different cultivars of wheat (Chamran,
Sayones and Gaskogen). The First National Symposium on Agriculture and Sustainable
Development. Opportunities and Future Challenges. Islamic Azad Univ. Shiraz. (In Persian)
3.Arduini, I., Masoni, A., Ercoli, L., and Mariotti, M. 2006. Grain yield, and dry matter and
nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding
rate. Eur. J. Agron., 25: 309–318.
4.Arpana, N., Kumar, S.D., and Prasad, T.N. 2002. Effect of seed inoculation, fertility and
irrigation on uptake of major nutrients and soil fertility status after harvest of late sown
lentil. J. Appl. Biol., 12: 23-26.
5.Bélanger, G., Ziadi, N., Pageau, D., Grant, C., Högnäsbacka, M., Virkajärvi, P., Hu, Z., Lu, J.,
Lafond, J., and Nyiraneza, J. 2015. A model of critical phosphorus concentration in the shoot
biomass of wheat. Agron. J., 107: 963-970.
6.Dordas, C. 2009. Dry matter, nitrogen and phosphorus accumulation, partitioning and
remobilization as affected by N and P fertilization and source–sink relations. Eur. J. Agron.,
30: 129-139.
7.Dordas, C.A., and Sioulas, C. 2009. Dry matter and nitrogen accumulation, partitioning, and
retranslocation in safflower (Carthamus tinctorius L.) as affected by nitrogen fertilization.
Field Crop Res., 110: 35-43.
8.Ehteshami, S.M.R., Pourebrahimil, M., and Khavazi, K. 2013. Effect of Pseudomonas
fluorescens strain 103 integrated with phosphorus fertilizer on nutrients concentration and
biological yield of two barley cultivars in greenhouse conditions. J. Sci. Technol.
Greenhouse Culture., 16: 15-26. (In Persian)
9.Fageria, N.K. 2009. The Use of Nutrients in Crop Plants. CRP Press. 430p.
10.Ghazanshahi, J. 2006. Plant and Soil Analysis. Publ. Aiizh. 272p.
11.Ghorbani-Nasrabadi1, R., Aghaz Nashtifani, P., and Zebarjadi, M. 2014. Evaluation of soil
Streptomyces sp. plant growth promotion traits and potential application in enhancing early
maize growth and P uptake. J. Soil Mang. Suttain. Prod., 4: 195-213. (In Persian)
12.Hamidi, A., AsgharZadeh, A., Choukan, R., DehghanShoar, M., Ghalavand, A., and
Malakuti, M. J. 2010. The effect of plant growth promoting bacteria (PGPR) on dry matter
partitioning and growth characteristics of corn in a greenhouse. Iran J. Soil Res., 24: 55-67.
(In Persian)
13.Kaur, G., and Reddy, M.S. 2015. Effects of phosphate-solubilizing bacteria, rock phosphate
and chemical fertilizers on maize-wheat cropping cycle and economics. Pedosphere. 25:
428–437.
14.Khan, M.S., Zaidi, A., and Wani, P.A. 2007. Role of phosphate-solubilizing microorganism
in sustainable agriculture-a review. Agron. Sustain. Dev., 27: 29-43.
15.Lavakush, Y.J., Verma, J.P., Jaiswal, D.K., and Kumar, A. 2014. Evaluation of PGPR and
different concentration of phosphorus level on plant growth, yield and nutrient content of
rice (Oryza sativa). Ecol. Eng., 62: 123-128
16.Mehrvarz, S., Chaichi, M.R., and Alikhani, H.A. 2008. Effects of phosphate solubilizing
microorganisms and phosphorus chemical fertilizer on yield and yield components of barely
(Hordeum vulgare L.). Am. Euras. Agr. Envarion. Sci., 3: 822-828
17.Mirahmadi, M., Malakuti, M.J., and Khavazi, K. 2011. Effect of PSB on P uptake by corn in
alkaline soils. 12thIranian Soil Science Congress. Univ. Tabriz, Tabriz, Iran. (In Persian)
18.Mirzashahi, K. 2012. The effect of phosphorus fertilizer Consumption Management on grain
yield and P Absorption in the north of Khuzestan. Crop Physiol. J., 4: 99-114. (In Persian)
19.Mohammadi, A., Asghari, H.R., Abasdokht, H., and Rahimi, M. 2011. Effect of Mycorrhiza
and Bavar 2 on root colonization and some features of Pea (Hashem cultivar) at various
levels of phosphorus fertilization. 1stNational Conference on Modern Agricultural Sciences
and Technologies. Univ. Zanjan, Zanjan, Iran. (In Persian)
20.Muchow, R.C. 1988. Effect of nitrogen supply on the comparative productivity of maize and
sorghum in a semi-arid tropical environment. I. Leaf growth and leaf nitrogen. Field Crops
Res., 18: 1–16.
21.Rastin, S. 2005. Biofertilizers, management and soil health. In. Khavazi, K., AsadiRahmani,
H., and Malakuti, M.J. (Eds.). The Need for Industrial Production of Biofertilizers in the
Country. Publ. Sana. Pp: 12-14. (In Persian)
22.Rodrguez, H., and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant
growth promotion. Biotecnol. Adv., 17: 319-339.
23.Sarikhani, M.R., Aliasgharzad, N., and Malboobi, M.A. 2013. Improvement of wheat
phosphorus nutrition using phosphate solubilizing bacteria. J. Soil Manag. Sustain. Prod., 3:
39-57. (In Persian)
24.Soltani, A. 2006. Application of SAS in Statistical Analysis. Jihad Univ. Mashhad. Pp: 182.
25.Sundara, B., Natarajan, V., and Hari, K. 2002. Influence of phosphorus solubilizing bacteria
on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops
Res., 77: 43-49.
26.Tohidinia, M.A., Mazaheri, D., Bagher-Hosseini, S.M., and Madani, H. 2014. Effect of
biofertilizer Barvar-2 and chemical phosphorus fertilizer application on kernel yield and
yield components of maize (Zea mays cv. SC704). Iran. J. Crop Sci., 15: 295-307. (In
Persian)
27.Zabihi, H.R., Savaghebi, G.R., Khavazi, K., Ganjali, A., and Miransari, M. 2009. Response
of wheat growth and yield to application of plant growth promoting rhizobacteria at various
levels of phosphorus fertilization. Iran. J.Field Crops Res., 7: 41-51. (In Persian)
28.Zabihi, H.R., Savaghebi, G.R., Khavazi, K., Ganjali, A., and Miransari, M. 2011.
Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.)
yield and P uptake under greenhouse and field conditions. Acta. Physiol. Plant., 33: 145-152.
29.Zadoks, J.C., Chang, T.T., and Konzak, C.F. 1974. A decimal code for the growth stages of
cereals. Weed Res., 14: 415-421