ارزیابی لاین های موتانت پیشرفته برنج (Oryza sativa L.) طارم محلی با استفاده از تجزیه علیت و عامل ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 دانشیار اصلاح نباتات، گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 عضو هیئت علمی

4 دانشکده منابع طبیعی ساری

5 مجری طرح های برنج مرکز تحقیقات برنج آمل

چکیده

سابقه و هدف: با توجه به اهمیت غذائی برنج و همچنین افزایش جمعیت، ایجاد لاین‌های جدید برنج و به دنبال آن گزینش برای بهبود عملکردآنها ضروری است. شناسائی اثرات مستقیم و غیر مستقیم صفات مؤثر بر عملکرد دانه موجب تسهیل در یک گزینش موفق می‌شود. با توجه به اهمیت عوامل پنهانی در شکل‌گیری صفات و تأثیر آنها بر عملکرد دانه، لزوم تعیین مسیر‌های برهمکنش اجزای عملکرد بر عملکرد دانه جهت بهبود در برنامه‌های اصلاحی، شناخت روابط داخلی بین صفات و تعیین مهم‌ترین صفات مرتبط با عملکرد دانه در گزینش لاین‌های موتانت پیشرفته طارم محلی این پژوهش انجام شد.
مواد و روش‌ها: تعداد 12 لاین موتانت پیشرفته طارم محلی به همراه ارقام طارم هاشمی، ندا و طارم محلی در دو منطقه ساری و تنکابن در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سال زراعی 1395 مورد ارزیابی قرار گرفتند. صفات اندازه‌گیری شده شامل روز تا 50 درصد گلدهی، روز تا رسیدن کامل دانه، ارتفاع بوته، تعداد پنجه بارور، طول خوشه، تعداد دانه پر و پوک در خوشه، وزن هزار دانه ، طول و عرض دانه، نسبت طول به عرض دانه، طول و عرض برگ پرچم، نسبت طول به عرض برگ پرچم و عملکرد دانه بودند. از طریق رگرسیون گام به گام متغیرهای مستقلی که اثر ناچیزی بر روی متغیر تابع داشتند حذف گردید و برازش بهترین مدل انجام شد. تجزیه علیت برای تعیین آثار مستقیم و غیر مستقیم صفات مورد بررسی بر عملکرد دانه محاسبه گردید، همچنین به منظور توجیه و تفسیر بهتر روابط داخلی بین صفات و شناخت عوامل پنهان از تجزیه به عامل‌ها استفاده شد.
یافته‌ها: نتایج نشان داد عملکرد دانه با صفات وزن هزار دانه (*354/0 و *304/0 به ترتیب در منطقه ساری و تنکابن) و تعداد پنجه بارور(**627/0 و **442/0) همبستگی مثبت و معنی دار و با ارتفاع بوته (*300/0- و **501/0-)همبستگی منفی و معنی دار داشت که در واقع بیان می‌کند ژنوتیپ‌های پاکوتاه با تعداد پنجه و وزن هزار دانه بیشتر عملکرد دانه بیشتری دارند. بر اساس نتایج تجزیه علیت مشخص شد که در منطقه ساری بیشترین اثر مستقیم به ترتیب مربوط به صفات تعداد پنجه بارور (613/0)و روز تا رسیدگی کامل (242/0) بودند، بنابراین ژنوتیپ‌های دیررس‌تر با تعداد پنجه بارور بیشتر، عملکرد دانه بیشتری خواهند داشت. در منطقه تنکابن ارتفاع بوته (452/0-) در جهت عکس و روز تا رسیدگی کامل دانه(431/0)در جهت مثبت بیشترین تأثیر را بر صفت عملکرد داشتند و ژنوتیپ‌‎های پاکوتاه‌تر و دیررس‌تر عملکرد بیشتری را نشان دادند. بر اساس تجزیه به عامل‌ها در منطقه ساری، پنج عامل انتخاب شدند که در مجموع بیش از 77 درصد تغییرات عملکرد را توجیه کردند که عامل اول مرفو-فنولوژی، عامل دوم خوشه و اجزای آن، عامل سوم تولید دانه، عامل چهارم اندازه دانه و عامل پنجم به عنوان اندازه برگ پرچم نامگذاری شدند. در منطقه تنکابن چهار عامل شناخته شدند که بیش از 70 درصد تغییرات عملکرد را توجیه کردند که عامل اول به عنوان ویژگی دانه و فنولوژی، عامل دوم به همراه عامل چهارم، مرفولوژی و اجزای تولید دانه و عامل سوم به عنوان تولید دانه و دیررسی نامیده شدند
نتیجه‌گیری: ضرائب مسیر نشان داد که صفت روز تا رسیدگی کامل دانه،افزایش تعداد پنچه بارور و کاهش ارتفاع بوته کارائی بیشتری داشتند و در برنامه‌های به نژادی می‌توانند به عنوان شاخص گزینش مورد استفاده قرار گیرند. بر اساس نتایج حاصل از تجزیه به عامل‌ها مشخص شد که انتخاب برای افزایش عملکرد دانه، افزایش دوره رشد رویشی و افزایش تعداد پنجه بارور در لاین‌های موتانت مورد بررسی به طور همزمان امکان-پذیر می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of advanced mutant lines of Tarom Mahalli rice (Oryza sativa L.) using path and factor analysis

نویسنده [English]

  • gholamali Ranjbar 2
2 Associate Professor of Plant Breeding, Department of Plant Breeding and Biotechnology, University of Agricultural Sciences and Natural Resources in Sari
چکیده [English]

Background and objective: According to importance of food rice, and also increase of population, the development of new rice lines, and following that selection for improvement of grain yield is essential. Identification of direct and indirect effects of traits affecting grain yield facilitate successful selection. This research was done according to the importance of hidden factors in the formation of traits and their effects on grain yield, the need to determine the paths of the interaction between yield components on grain yield to improve in breeding programs, understanding the inter-relationships between traits and determining the most important traits related to grain yield for selecting the advanced mutant lines of Tarom Mahalli.
Material and methods: Twelve advanced mutant lines derived from Tarom mahalli together with Tarom Hashemi, Neda and Tarom mahalli were evaluated in a randomized complete block design with three replications at two locations of Sari and Tonekabon in 2016. The measured traits include: days to 50% flowering (DF), days to full maturity (DM), plant height (PH), no. of fertile tiller (FT), panicle length (PL), no. of filled and unfilled seeds per panicle (FUS), 1000 grain weight (1000 GW), grain length and width (GL&W), grain length / width ratio (GL/W), flag leaf length and weight (FLW), flag leaf length / width ratio (FL/W) and grain yield. Through stepwise regression, independent variables that had little effect on the function variable were eliminated, and fit the best model. Path analysis was calculated to determine the direct and indirect effects of traits on grain yield and also factor analysis was used in order to better justify and interpret the inter-relationships between traits and better understanding of hidden factors.
Results: Results showed that grain yield had positive significant correlation with 1000 grain weight (0.354* and 0.304* at Sari and Tonekabon location respectively) and fertile tiller (0.627** and 0.442**), and negative significant correlation with plant height (-0.300* and -0.501**). It expressed that the shorter cultivars having more fertile tillers and heavier 1000 grain weight illustrating more performance. Based on results of path analysis revealed that the most direct effect related to no. of fertile tiller (0.613) and days to maturity (0.242) respectively, so later maturity genotypes with more no. of fertile tiller produced more grain yield. At Tonekabon location, plant height (-0.452) in the opposite direction and days to full maturity (-0.431) in the positive direction had the greatest impact on yield and shorter and late maturity genotypes exhibited higher performance. According to factor analysis at Sari location, five factors were selected so that totally more than 77% of yield variance was identified by the first factor was called as morpho-phenology. The second, third, fourth and fifth factors were called as panicle and its components, grain production, seed size and flag leaf size, respectively. At Tonekabon location four factors were known which are able to identify more than 70% of yield variance. The first factor was called as grain characteristic and phenology, the second together with the fourth factor, were defined as morphology and grain production component and the third factor was defined as grain production and late maturity.
Conclusion: Path analysis showed that days to full maturity, increase of number of fertile tiller and decrease of plant height have greater efficiency and can use as a selection index in breeding programs. Based on results obtained of the factor analysis found that selection for increased of grain yield, increased of the period of vegetative growth and increased of number of fertile tiller in investigated mutant lines is possible simultaneously.

کلیدواژه‌ها [English]

  • mutant
  • correlation
  • path and factor analysis
1. Abouzari Gazafrodi, A., Honarnegad, R., Fotokian, M.H. and Alami, A. 2006. Study of correlations among agronomic traits and path analysis in rice (Oryza sativa L.). J. Sci. Tech. Agric. Natu. Res., 10(2): 99-107.
2. Adu-Dupaah, H.K., and Sang Won, R.S. 2005. Improving bambra groundnut productivity using gamma irradiation and in vitro techniques. Afr. J. Biotechnol., 3(5): 260-265. 3. Agahi, K., Fotokian, M.H., and Younesi, Z. 2012. Study of genetic diversity and important correlations of agronomic traits in rice genotypes (Oryza sativa L.). Iran. J. Biol., 25(1): 97-110. (In Persian) 4. Alahgholipour, M., and Mohammad Salehi, M.S. 2003. Factor and path analysis in different rice genotypes. Seed plant Imp. J., 19(1): 76-86. (In Persian)
5. Ashfaq, M., Khan, A.S., Khan, S.H.U., Ahmad, R. 2012. Association of various morphological traits with yield and genetic divergence in rice (Oryza Sativa L.). Int. J. Agric. Biol., 14(1): 55–62. 6. Bagheri, N., Babaeian-Jelodar, N., and Pasha, A. 2011. Path coefficient analysis for yield and yield components in diverse rice (Oryza sativa L.) genotypes. Bih. Biol., 5(1): 32-35. 7. Bakhsh Balouchzaehi, A., and Kiani, G. 2013. Determination of selection criteria for yield improvement in rice through path analysis. J. Crop Breed., 5(12): 75-84.
8. Beikzadeh, H., Alavi Siney, S.M., Bayat, M., and Ezady, A.A. 2013. Estimation of genetic parameters of effective agronomical traits on yield in some of Iranian rice cultivar. Agron. J., (Pajouhesh and Sazandegi) 104: 73-78. (In Persian) 9. Bhadru, D., Chandra Mohan, Y., Tirumala Rao, V., Bharathi, D., and Krishna, L. 2012. Correlation and path analysis studies in gallmidge resistant cultures of rice (Oryza sativa L.). IJABPT., 3(2): 137-140.
10. Dewy, D.R., and Lu. K.H. 1959. A correlation and path coefficient analysis of component of crested wheat grass seed production. Agron. J., 51: 515-518. 11. Eidi kohnaki, M., Kiani, G., and Nematzadeh, G. 2013. Relationship between morphological traits in rice restorer lines at F 3 generation using multivariate Analysis. Int. J. Adv. Biol.
Biom. Res., 1: 6. 572-577. 12. Ghavami, F., and Rezai, A. 2000. Variation and relation of morphological and phonological traits in mungbean. Iran. J. Agric. Sci., 31(1): 1.147-158. (In Persian) 13. Ghorbani, H., Samizadeh Lahiji, H.A., Rabiei, B., and Allahgholipour, M. 2011. Grouping Different Rice Genotypes Using Factor and Cluster Analyses. J. Agric. Sci., 21(2): 3: 89-104. (In Persian)
14. Hasan, M.J., Kulsum, M.U., Akter, A., Masuduzzaman, A.S.M., and Ramesha, M.S. 2011. Genetic variability and character association for agronomic traits hybrid rice (Oryza sativa L.).
Bangladesh J. Plant. Breed. Gen. 24(1): 45-51.
15. Heidari, B., Saeidi, Q.A., and Seyed-Ebrahimi, B. 2007. Factor analysis for quantitative traits and path analysis for grain yield in wheat. J. WSS., 11(42): 135-143.
16. Honarnejad, R. 2002. Study of correlation between some quantitative traits and grain yield in rice (Oryza sativa L.) using path analysis. Iran J. Crop Sci., 4(1): 25-34. (In Persian) 17. IRRI. 1996. Standard evaluation system for rice 4th edition Manila, Philippines. Int. Rice Res. Inst., 52p. 18. Islam, M.A., Raffi, S.A., Hossain, M.A. and Hasan, A.K. 2015. Character association and path coefficient analysis of grain yield and yield related traits in some promising early to medium duration rice advanced lines. Int. J. Expt. Agric., 5(1): 8-12. 19. Khaldari, M. 2011. Statistical Methods. Jahad daneshgahi Publisher, Tehran, 862p. (In Persian)
20. Lestari, A.P., Abdollah, B., Junaedi, A. and Aswidinnoor, H. 2010. Yield stability and adaptability ofaromatic new plant type (NPT) rice lines. Indonesia J. Agron., 38(3): 199-204. 21. Lin, J.H., Singh, H., Chang, Y.T., and Chang, Y.H. 2011. Factor analysis of the functional properties of rice flours from mutant genotypes. Food Chem., 126(3): 1108-1114. 22. Mohammadi, S. 2014. Evaluation of grain yield and its components relationships in bread wheat genotypes under full irrigation and terminal water stress conditions using multivariate statistical analysis. Iran. J. Field Crops Res., 1(12): 99-109.
23. Moradi, M., Rezai, A., and Arzani, A. 2005. Path analysis for yield and related traits in oats. J. Sci., Technol. Agric. Nat. Res., 9(1): 173-180. (In Persian)
24. Nachimuthu, V.V., Robin, S., Sudhakar, D., Raveendran, M., Rajeswari, S., and Manonmani, S. 2014. Evaluation of rice genetic diversity and variability in a population panel by principal
component analysis. Indi. J. Sci. Technol., 7(10): 1555-1562.
25. Nandan, R., Sweta and Singh, S.K. 2010. Character association and path analysis in rice (Oryza sativa L.) genotypes. World J. Agric. Sci., 6(2): 201-206. 26. Oad, F.C., Samo, M.A., Hassan, Z., Cruz, P.S., and Oad, N.L. 2002. Correlation and path analysis of quantitative characters of rice ratoon cultivars and advance lines. Int. J. Agric.
Biol., 4(2): 204-207. 27. Rahim-Souroush, H., Mesbah, M., and Hossainzadeh, A.H. 2004. A study of relationship between grain yield and yield components in rice. Iran. J. Agirc. Sci., 35(4): 983-993.
28. Ratna, M., Begum, S., Husna, A., Dey, S.R., and Hossain, M.S. 2015. Correlation and path coefficients analysis in basmati rice. Bangladesh J. Agric. Res., 40(1): 153-161. 29. Ravindra Babu, V.R., Shreya, K., Singh Dangi, K., Usharani, G., and Siva Shankar, A. 2012. Correlation and path analysis studies in popular rice hybrids of india. Int. J. Sci. Res., 2(3): 1-5.
30. Sabouri, H., Biabani, A., Fazlalipour, M. and Sabouri, A. 2010. Determination of best selection indices for facilitating selection in rice. J. Plant Prod., 17(4): 1-25. (In Persian) 31. Sabouri, H., Rabiei, B., and Fazlalipour, M. 2008. Use of Selection Indices Based on Multivariate Analysis for Improving Grain Yield in Rice. Rice Sci., 15(4): 303-310.
32. Samadi Gorji, M., Zaman Mirabadi, A., Rammeah, V., Hasanpour, M., and Esmailifar, A. 2015. Evaluation of agronomic traits of mutants induced by gamma irradiation in PF and RGS003 varieties of rapeseed (Brassica napus L.). J. Crop Breed., 7(15): 135-114.
33. Satheeshkumar, P., and Saravanan, K. 2012. Genetic variability correlation and path analysis in rice (Oryza sativa L.). Int. J. Cur. Res., 4(9): 82-85. 34. Sharifi, P., Dehghani, H., Moneni, A. and Moghadam, M. 2013. Study the genetic relations of some of rice
agronomic traits with train yield by using multivariate statistical methods. Iran. J. Field Crop Sci., 44(2): 273-282. (In Persian)
35. Tourchi, M., and Rezai, A.M. 1996. Correlation between traits and path analysis for grain yield in sorghum
(Sorghum bicolor. L. Moench). Iran J. Agric. Sci., 28(1): 73-86. (In Persian)
36. Wright, S. 1921. Correlation and causation. J. Agric. Res., 20: 557-585.