ارزیابی شاخص‌های پوشش گیاهی مبتنی بر سنجش از دور در مراحل مختلف رشد برای برآورد زیست‌توده ذرت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی

2 گروه آموزشی مهندسی آب- پردیس کشاورزی و منابع طبیعی- دانشگاه رازی

3 دانشکده ITC، دانشگاه تونته

چکیده

سابقه و هدف: روش‌های سنتی تخمین پارامترهای بیوفیزیکی گیاهان (از جمله زیست‌توده) در قالب نمونه برداری‌های محدود یا توزین نهایی محصول برداشت شده علاوه بر صرف وقت و هزینه زیاد، مشکل می‌باشد. در سالیان اخیر استفاده از تصاویر ماهواره‌ای و فناوری سنجش از دور برای تخمین این پارامترها مورد توجه قرار گرفته است. تاکنون شاخص‌های گیاهی متعددی برای ارزیابی و برآورد پارامترهای بیوفیزیکی و بیوشیمیایی گیاهان توسعه داده شده و مورد استفاده قرار گرفته‌اند. به دلیل سهولت استفاده از این شاخص‌ها، این روش یکی از متداولترین تکنیک‌های سنجش از دور برای برآورد چنین پارامترهایی می‌باشند. با توجه به اینکه تاکنون چنین مطالعاتی در استان کرمانشاه انجام نگرفته است مطالعه کنونی به منظور برآورد زیست‌توده ذرت علوفه‌ای در یکی از دشت‌های استان کرمانشاه (ماهیدشت) با استفاده از تصاویر ماهواره‌ای لندست 8 انجام شده است.
مواد و روش‌ها: وزن خشک گیاه (زیست‌توده) در زمان گذر ماهواره لندست 8 از 15 مزرعه در سطح منطقه مطالعاتی(دشت ماهیدشت کرمانشاه) اندازه گیری شد. در طول دوره رشد ذرت 8 تصویر ماهواره لندست (سنجنده OLI) وجود داشت که از سایت زمین شناسی آمریکا دانلود شد. در پژوهش حاضر 17 شاخص پوشش گیاهی (NDVI، TNDVI، MNDVI، SAVI، OSAVI، NRVI، RVI، PD321، PD312، PD311، VI3، VI2، VI1، IPVI، DVI، NIR* و MIRV1) که در مطالعات قبلی همبستگی قابل قبولی با مقدار زیست‌توده داشتند مطالعه شدند. از ضریب همبستگی میان زیست‌توده اندازه گیری شده و مقدار متناظر شاخص‌های گیاهی جهت ارزیابی دقت عملکرد این روش‌ها استفاده شد. برای هر بازدید شاخص با همبستگی بالاتر به عنوان شاخص مطلوب برای آن مرحله از رشد گیاه تعیین و یک رابطه رگرسیونی بین مقدار زیست‌توده ذرت و شاخص مطلوب ارایه گردید. در نهایت مقادیر اندازه گیری شده زیست‌توده و برآورد شده بر اساس روابط رگرسیونی برازش یافته با استفاده از آماره جذر میانگین مربعات خطای نرمال شده (NRMSE) مورد مقایسه قرار گرفتند.
یافته‌ها: مقادیر اندازه گیری شده زیست‌توده در ابتدای دوره رشد کم بود و به تدریج تا بازدید هفتم (۴ شهریور) افزایش و سپس در بازدید آخر (20 شهریور) کاهش یافت. میانگین زیست‌توده در مزارع 15 گانه در بازدیدهای هفتم (۴ شهریور) و هشتم (20 شهریور) به ترتیب با 40195 و 36741 کیلوگرم در هکتار اندازه‌گیری شد. نتایج بررسی شاخص‌ها بیانگر این بود که شاخص‌های PD311 برای بازدید اول، PD312 برای بازدید دوم و مراحل ابتدایی رشد، *NIR برای بازدید های سوم، ششم، هفتم و هشتم، VI3 برای بازدید چهارم و NRVI برای بازدید پنجم بیشترین ضریب همبستگی را با مقادیر زیست‌توده اندازه‌گیری شده داشتند. ضریب همبستگی شاخص مطلوب در بازدیدهای 8 گانه مراحل رشد برابر با 42/0، 5/0، 58/0، 71/0، 73/0، 66/0، 57/0 و 47/0 بدست آمدند. در مجموع شاخص NIR* با میانگین ضریب همبستگی 51/0 مطلوب‌ترین شاخص برای کل دوره رشد تعیین شد. همچنین با توجه به آماره NRMSE می‌توان نتیجه گرفت که روابط برازش یافته قادر هستند که مقدار زیست‌توده ذرت را به جز در مرحله اول رشد با دقت متوسط تا خوب برآورد نمایند. میزان NRMSE در بازدیدهای چهارم، پنجم، ششم، هفتم و هشتم نشان ‌دهنده تطابق خوب بین داده‌های مشاهداتی و برآورد شده می‌باشد.
نتیجه‌گیری: نتایج تحقیق حاضر بیانگر این بود که زیست‌توده ذرت را می توان با استفاده از شاخص‌های گیاهی مستخرج از تصاویر ماهواره‌ای با دقت قابل قبولی تخمین زد. دقت این روش برای دوره های میانی رشد بهتر از دوره های ابتدایی رشد گیاهان می باشد. بهتر این است که به جای استفاده از یک شاخص گیاهی برای کل دوره رشد گیاه از شاخص مطلوب برای آن مرحله از رشد گیاه استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Remote Sensing Based Vegetation Indices at Various Growth Stages for Estimation of Corn Biomass

نویسندگان [English]

  • Hadi Varvani 1
  • Bahman Farhadi Bansouleh 2
  • M. Alii Sharifi 3
1 Department of water engineering, Faculty of agriculture, Razi University
2 Department of Water Engineering, Faculty of Agriculture, Razi University
3 Faculty of ITC, University of Twente
چکیده [English]

Introduction: Traditional methods of biophysical crop parameters (including biomass) estimation in the form of finite sampling or final weighing of the harvested products, is time consuming, costly and difficult. In recent years, the use of satellite imagery and remote sensing technology has been considered to estimate these parameters. So far, several vegetation indices have been developed and used to evaluate and estimate the bio-physiological and biochemical parameters of the crops. Because of the ease of using these indicators, this method is one of the most commonly used remote sensing techniques to estimate such parameters. Considering that such studies have not been carried out so far in Kermanshah province, the current study was carried out to estimate the corn biomass in a fertile plain of Kermanshah province (Mahidasht) using Landsat 8 satellite imagery.
Materials and Methods: The dry weight of the crop biomass was measured at the time of the satellite passing from 15 farms at the study area. During the corn growth period, there were 8 satellite images which downloaded from the American Geological Survey web site. In this study, 17 vegetation indices (NDVI- TNDVI- MNDVI- SAVI- OSAVI- VI1-VI2-VI3-PD311-PD312-PD321-RVI-NRVI- MIRV1-NIR*-DVI-IPVI) which in previous studies showed acceptable correlation with crop biomass were used. The correlation coefficient between the measured biomass and the corresponding values of the vegetation indices were used to evaluate the accuracy of the algorithms. For each fieldwork, the index with higher correlation coefficient was determined as the appropriate index for that stage of crop growth, and a regression relation was presented between the amount of corn biomass and the desired index. Finally, estimated values of the biomass based on the regression equations were compared with measured biomass using normalized mean square error (NRMSE).
Results: The measured values of the biomass were low at the beginning of the growth period and gradually increased until the seventh visit (August 26) and then decreased in the last visit (September 11). The average of biomass in 15 farms was measured as 40195 and 36741 kg / ha respectively in seventh and eighth fieldworks. Results of the study showed that the indices of PD311 for the first visit, PD321 for the second visit and the initial stages of growth, NIR* for the third, sixth, seventh and eighths, VI3 for the fourth visit, and the NRVI for the fifth visit, had the highest correlation coefficient with the measured values of biomass. The correlation coefficient of the appropriate index in the 8 fieldworks was 0.42, 0.5, 0.58, 0.71, 0.73, 0.66, 0.57 and 0.47, respectively. In overall, NIR * with the mean correlation coefficient of 0.52 was the most favorable index for the entire growth period. Based on values of NRMSE, it can be concluded that fitted relationships were able to estimate the amount of corn biomass except in the first stage of growth with a moderate to good accuracy. The amount of NRMSE in the last fieldwork, which is related to the final biomass yield, was 11.7%, indicating a good match between observed and predicted data.
Conclusion: The results of this study indicate that corn biomass can be estimated using vegetation indices with acceptable accuracy. The precision of this method was better for intermediate periods of crop growth than the early stages. It is better to use an appropriate vegetation index for each stage of crop growth instead of using an index for the entire crop growth period.

کلیدواژه‌ها [English]

  • Biomass
  • Remote sensing
  • satellite images
  • Vegetation index
منابع
1. Arzani, H. 2002. Examination of vegetation indices for vegetation parameters measurements in semi-arid and arid area. The 3rd international Iran and Russia conference (agriculture and natural resources)., 2: 596-603. (In Persian)
2. Asrar, G., Hipps, L.E., and Kanemasu, E.T. 1984. Assessing solar energy and water use efficiencies in winter wheat: A case study. Agri. For. Meteorol., 31)1): 47-58.
3. Bannari, A., Morin, D., Bonn, F., and Huete, A.R. 1995. A review of vegetation indices, Remote Sens. Rev., 13: 95-120.
4. Bao, Y., Gao, W., and Gao, Z. 2009. Estimation of winter wheat biomass based on remote sensing data at various spatial and spectral resolutions. Front. Earth Sci., 3(1): 118–128.
5. Baret, F., and Guyot, G. 1991. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ., 35 (2-3): 161-173.
6. Baret, F., Guyot, G., and Major, D.J. 1989. TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In Geoscience and Remote Sensing Symposium, 1989. IGARSS'89. 12th Canadian symposium on remote sensing. Canada. Pp: 1355-1358.
7. Battude, M., Al Bitar, A., Brut, A., Tallec, T., Huc, M., Cros, J., and Demarez, V. 2017. Modeling water needs and total irrigation depths of maize crop in the south west of France using high spatial and temporal resolution satellite imagery. Agric. Water Manag., 189: 123-136.
8. Broge, B.H., and Mortensen, J.V. 2002. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens. Environ., 81: 45-57.
9. Cho, M.A. 2007. Hyper-spectral remote sensing of biochemical and biophysical parameters: the derivate red-edge" double-peak feature", a nuisance or an opportunity?, PhD Thesis, Wageningen University, The Netherlands, 241p.
10. Coppin, P., Jonckheere, I., nackaerts, K., and Muys, B. 2004. Digital change detection methods in ecosystem monitoring: a review. Int. J. Remote Sens., 25(9): 1565–1596.
11. Crippen, R.E. 1990. Calculating the vegetation index faster. Remote Sens. Environ., 34 (1): 71−73.
12. Dengshen, L. 2006. The potential and challenge of remote sensing based biomass estimation. Int. J. Remote Sens., 27(7): 1297-1328.
13. Elvidge, C.D., and Chen, Z. 1995. Comparison of broad-band and narrow-band red and near-infrared vegetation
indices. Remote Sens. Environ., 54 (1): 38-48.
14. Gilabert, M.A., Gandia, S., and Melia, J. 1996. Analyses of spectral-biophysical relationships for a corn canopy. Remote Sens. Environ., 55 (1): 11-20.
15. Gu, Y., Brown, J., Verdin, J., and Wardlow, A. 2007. A five year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys. Res. Lett., 34: 1-6.
16. Huete, H. 1988. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ., 25: 295-309.
17. Lefsky, M.A., and Cohen, W.B. 2003. Selection of remotely sensed data. In M.A. Wulder and S.E. Franklin (eds.), Remote Sensing of Forest Environments: Concepts and Case studies. Kluwer Academic Publishers, Boston., USA. 13–46.
18. Lillesand, T., Kiefer, R.W., and Chipman, J. 2014. Remote Sensing and Image Interpretation. John Wiley and Sons., 167p.
19. Mkhwanazi, M., Chávez, J.L., and Andales, A.A. 2015. SEBAL-A: A remote sensing ET algorithm that accounts for advection with limited data. Part I: Development and validation. Remote Sens., 7(11): 15046-15067.
20. Mohammadi Ahmad Mahmoudi, E., Kamkar, B., and Abdi, O. 2015. Comparison of geostatistical- and remote sensing data-based methods in wheat yield predication in some of growing stages (A case study: Nemooneh filed, Golestan province). J. Crop Prod., 8 (2): 51-76. (In Persian)
21. Mosleh, M.K, Hasan, Q.K., and Chowdhury, E.H. 2015. Application of remote sensors in mapping rice area and forecasting its production: a review, Sensors., 15: 769-791.
22. Nazari, R., and Kaviani, A. 2016. Comparing the estimates of reference crop evapotranspiration in Qazvin plain using SEBAL and METRIC models. Iran. J. Water Res. Agric., 30(2): 187-199. (In Persian)
23. Pickup, G., Chewings, V.H., and Nelson, D.J. 1993. Estimating changes in vegetation cover over time in arid rangelands using Landsat MSS data. Remote Sens. Environ., 43: 243-263.
24. Rahimi Moghaddam, S. 2018. Early sowing date as a strategy for improvement of maize yield and maize physiological and phonological characteristics in climate change conditions at Kermanshah Province. J. Crop Prod., 10(4): 91-105. (In Persian)
25. Rondeaux, G., Steven, M., and Baret, F. 1996. Optimization of soil- adjusted vegetation indices. Remote Sens. Environ., 55: 98-107.
26. Rouse J.W., Haas, R.H., Deering, D.W., Schell, J.A., and Harlan, J.C. 1974. Monitoring the Vernal Advancement and Retro Gradation (green wave effect) of Natural Vegetation. NASA/GSFC Type III Final Report, Greenbelt, MD., 371p.
27. Sabaghzadeh, S. Zare, M. and Mokhtari, M.H. 2017. Estimation biomass using Landsat satellite images (case study: Merck basin, Birjand). J. Range and Watershed Manag., 69 (4): 907-920. (In Persian)
28. Savage, M.J. 1993. Statistical aspects of model validation. In At Workshop on the field water balance in the modelling of cropping systems, University of Pretoria, South Africa., 227p.
29. Sawasawa, H.L. 2003. Crop yield estimation: Integrating RS, GIS, and management factors. A case study of Birkoor and Kortigiri Mandals, Nizamabad District India, MSc Thesis, ITC, Enschede, The Netherlands.
30. Stehman, S.V. 2004. A critical evaluation of the normalized error matrix in map accuracy assessment. Photogramm. Eng. Remote Sens., 70(6): 743–751.
31. Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ., 8: 127-150.
32. Zhang, H., Chen, H., and Zhou, G. 2012. The model of wheat yield forecast based on modis-ndvi: a case study of xinxiang. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences Congress., 12p.