ارزیابی پایداری عملکرد دانه ارقام جو زمستانه (Hordeum vulgare L.) با استفاده از روش اثرات اصلی جمع‌پذیر و اثرات متقابل ضرب‌پذیر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی، گروه زراعت و اصلاح نباتات، دانشگاه آزاد اسلامی، واحد کرج، باشگاه پژوهشگران و نخبگان جوان، کرج، ایران.

2 دانشگاه آزاد اسلامی واحد کرج

3 گروه زراعت و اصلاح نباتات، دانشگاه آزاد اسلامی، واحد کرج، کرج، ایران

چکیده

سابقه و هدف: مطالعه دقیق ماهیت برهمکنش ژنوتیپ با محیط، امکان شناسایی ژنوتیپ‌های پایدار و سازگار را برای به‌نژادگران فراهم می‌آورد و همواره یکی از موضوعات مهم در تولید و آزادسازی ارقام جدید پایدار و پر محصول در طرح‌های به‌نژادی بوده است. وجود برهمکنش ژنوتیپ و محیط ارزش ژنوتیپ‌ها را در مکان‌های مختلف تحت تأثیر قرار می‌دهد؛ با توجه به این مسئله پژوهش حاضر با هدف شناسایی چگونگی واکنش ارقام در هر یک از مناطق مورد بررسی بر اساس مدل اثرات اصلی افزایشی و اثرات متقابل ضرب‌پذیر و درک بهتر از موضوع برهمکنش ژنوتیپ و محیط و تعیین میزان پایداری عمومی و خصوصی ارقام انجام شد.
مواد و روش‌ها: تعداد 10 رقم جو زمستانه (گرگان 4، ریحان، کویر، نصرت، نیمروز، والفجر، ماکوئی، زرجو، گرگان و استرین) طی سال زراعی 95-1394 در 5 منطقه شامل کرج، بیرجند، کاشمر، شیراز و سنندج در قالب طرح بلوک‌های کامل تصادفی با سه تکرار مورد کشت و ارزیابی قرار گرفتند. ابتدا بر روی داده‌ها آزمون بارتلت انجام شد و به‌منظور تجزیه و تحلیل داده‌های حاصل از آزمایش، از مدل اثرات اصلی افزایشی و اثرات متقابل ضرب‌پذیر (امی) استفاده شد. برای بررسی پایداری ارقام و محیط‌ها از آماره ارزش پایداری امی (ASV) استفاده شد.
یافته‌ها: بیش‌ترین عملکرد دانه مربوط به رقم استرین با 87/602 گرم در متر مربع و کم‌ترین عملکرد دانه مربوط به ارقام ریحان و زرجو به ترتیب با 73/306 و 33/338 گرم در مترمربع بود. نتایج تجزیه امی نشان داد که اثر اصلی ژنوتیپ، برهمکنش ژنوتیپ در محیط و اولین مؤلفه اصلی برهمکنش در سطح احتمال یک درصد معنی‌دار بودند و اولین مؤلفه اصلی برهمکنش ژنوتیپ در محیط به‌تنهایی حدود 76 درصد از مجموع مربعات برهمکنش را تبیین نمود. اثر متقابل ژنوتیپ و محیط 25 درصد از مجموع مربعات کل را به خود اختصاص داد. بر اساس نتایج آماره پایداری امی ژنوتیپ‌های زرجو، نصرت و ماکوئی به ترتیب با 77/0، 48/2 و 74/2 کم‌ترین میزان ASV را به خود اختصاص دادند، ولی در این بین رقم نصرت با داشتن عملکرد بالاتر از میانگین کل به‌عنوان رقم پایدار با عملکرد بالا شناخته شد. براساس نتایج ضریب رگرسیون (bi) ارقام نیمروز، ماکوئی و زرجو دارای پایداری قابل قبولی بودند. نتایج آماره ضریب تشخیص ( ) و آماره پایداری هنسون (Di2) نشان نشان داد که ارقام نصرت، ماکوئی، زرجو و گرگان از پایداری بالاتری برخودار می‌باشند. ژنوتیپ‌های کویر و نصرت بر اساس نمودار میانگین عملکرد دانه در مقابل اولین مؤلفه اصلی برهمکنش ژنوتیپ و محیط، دارای عملکردی بیشتر از میانگین و از لحاظ اولین مؤلفه برهمکنش کم‌ترین میزان را داشتند در نتیجه پایدارترین ژنوتیپ‌ها بودند. بر اساس نمودار بای‌پلات اولین و دومین مؤلفه اصلی برهمکنش به ترتیب ژنوتیپ‌های زرجو، ماکوئی و نصرت، پایدارترین ژنوتیپ‌ها بودند. بر اساس این نمودار ارقام، کویر، والفجر، گرگان و استرین از پایداری عملکرد کمتری برخوردار بودند.
نتیجه‌گیری: نتایج حاصل از این مطالعه مؤید وجود تنوع ژنتیکی معنی‌دار میان ژنوتیپ‌ها و برهمکنش ژنوتیپ با محیط بود که بر اساس مدل امی ارقام کویر و نصرت از پایداری عملکرد دانه بیشتری برخوردار بودند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of yield stability of winter barley varieties (Hordeum vulgare L.) using additive main effects and multiplicative interaction method

نویسنده [English]

  • Ali Khomari 1
1 Plant breeding Ph. D. student, Department of Agronomy and Plant Breeding, Young Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran.
چکیده [English]

Background and objectives: Accurate recognition of the genotype - environment interaction nature, provides the possibility of identification of stable genotypes for breeders and it is always one of the important issues in production and release of new cultivars in plant breeding projects. The existence of genotype - environment interaction influences the genotypes value in different locations. Aim to present study was identification of the cultivars responds to different regions based on the model of the additive main effects and multiplicative interactions (AMMI), better understanding of interaction between genotype and environment, determine the general and the specific stability.
Material and methods: Ten varieties of winter barley (Hordeum vulgare L.,) (Gorgan 4, Reihan, Kavir, Nosrat, Nimrooz, Valfajr, Makoei, Zarjo, Gorgan, Strain) evaluated during 2015- 2016 in 5 regions including Karaj, Birjand, Kashmar, Sanandaj and Shiraz in a randomized complete block design (RCBD) with three repeats. First, Bartlett's test carried out on the data, suggesting the uniformity of errors in the various experiments. The additive main effects and multiplicative interactions method (AMMI) used to investigation of the genotype and genotype - environment interaction and find out of the adaptability and stability of genotypes.
Results: The highest grain yield belonged to strain cultivar with 602.87 g / m2, the lowest grain yield reveal for Reyhan and Zarjo cultivars was 306.73 and 3338.33 g / m2 respectively. AMMI results showed the main genotype effect, genotype - environment interaction and the first principal component interaction were significant at the 1 % likelihood level and the first interaction principal component of the genotype - environment interaction explains about 76 % of sum of squares. The interaction of genotype and environment explain 25% of the total sum of squares. For studying of the varieties stability, AMMI stability value (ASV) used and Zarjo, Nosrat and Makuei genotypes, to rate 0.77, 2.48 and 2.74 respectively, assigned lowest amount ASV, but Nosrat variety with average yield upper known as stable varieties. Between environments, Kashmar with the lowest ASV (6.58) had the highest stability. Base regression coefficient (bi) Nimrooz, Makuei and Zarjo had the adequate stability. Base coefficient of determination (Ri2) and Hanson stability estimator, Nosrat, Makuei, Zarjou and Gorgan cultivares had the upper stability. Kavir and Nosrat genotypes based AMMI1 graph, had the upper total yield average and the first component interacts was the lowest rate therefore known as the most stable genotype. Based on the first and second principal component biplot graph (AMMI2), Zarjo, Makuei and Nosrat, were the most stable genotypes. Base this graph the Kavir, Valfajr, Gorgan and Strain cultivars had the lowest yield stability.
Conclusion: The results of this study show the significant genetics variability among genotypes and genotype - environment interaction and base AMMI method, Kavir and Nosrat were the most stable genotypes.

کلیدواژه‌ها [English]

  • AMMI
  • Adaptability
  • barley
  • Genotype-environment interaction
  • Principal component
1. Abdemishani, S., and Shahnejatboshehri,
A.A. 2008. Advance in Plant
Breeding. Tehran university press. 248p.
(In Persian)
2. Albert, M.J.A. 2004. A comparison of
statistical methods to describe
genotype×environment interaction and
yield stability in multi-location maize
trials. M.Sc. Thesis. Department of Plant
Sci., the University of the Free State,
Bloemfontein.
3. Anandan, A., and Eswaran, R. 2009.
Genotype by environment interaction of
rice (Oryza sativa L.) hybrids in the east
coast saline region of Tamil Nadu. In the
Proceeding of 2ⁿᵈ Iteraction Rice Con,
Pp: 226-234.
4. Badooei Delfard, R., Mostafavi, K., and
Mohammadi, A. 2016. Genotype –
Environment Interaction and Yield
Stability of Winter Barley Varieties
(Hordeum vulgare L.). J. Crop Breed.,
20(3): 99-106.
5. Crossa, J. 1990. Statistical analysis of
multi location trials. Adv. Agr., 44: 55-
85.
6. Ehdaei, B. 1994. Plant Breeding.
Barsava press. Publication of Mashhad.
256p. (In Persian)
7. Farshadfar, A. 1998. Quantitative
Genetic in Plant Vreeding. Second
volume. Tagh bostan press. 381p. (In
Persian)
8. Farshadfar, E., and Sutka, J. 2006.
Biplot analysis of genotype-environment
interaction in durum wheat using the
AMMI model. Acta Agr. Hung.,, 54(4):
459- 467.
9. Gauch, H.G. 1988. Model selection and
validation for yield trials with
interaction. Biometrics., 44: 705- 715.
10. Gauch, H.G. 1992. Statistical Analysis
of Regional Trials, AMMI Analysis of
Factorial Designs. Elsevier Pub.
Amsterdam, Netherlands.
11. Gauch, H.G., and Zobel, R.W. 1997.
Identifying mega-environments and
targeting genotypes. Crop Sci., 37: 311-
326.
12. Gollob, H.F. 1968. A statistical model
which combines features of factor
analytic and analysis of variance
techniques. Psycometrika., 33: 367- 376.
13. Miller, P.A., Williams, C.J., Robinson,
H.F., and Comstock, R. 1958. Estimates
of genotypic and environmental
variances and covariance in upland
cotton and their implication in selection.
Agr., J., 50: 126- 137.
14. Miller, P.A., Williams, J.C., and
Robinson, H.F. 1959.
Variety×environment interaction in
cotton variety tests and their implication
on testing methods. Agr. J., 51: 132-134.
15. Mandel, J. 1971. A new analysis of
variance model for non-additive data.
Technometrics., 13: 1- 18.
16. Nikkhah, H.R., Yousefi, A.,
Mortazavian, S.M., and Arazmjoo, M.
2007. Analysis of yield stability of
barley (Hordeum vulgare L.) genotypes
using additive main effects and
multiplicative interaction (AMMI)
model. Iran. J. Crop Sci., 9, 1(33): 1-12.
(In Persian)
17. Purchase, J.L. 1997. Parametric analysis
to describe genotype×environment
interaction and yield stability in winter
wheat. Ph.D. dissertation, department of
agronomy, university of Free State,
Bloemfontein, South Africa.
18. Purchase, J.L., Hatting, H., and Van
Deventer, C.S. 2000. Genotype
×environment interaction of winter
wheat in south Africa: II. Stability
analysis of yield performance. South
Africa J. Plant Soil., 17(3): 101-107.
19. Raiger, H.L., and Prabhakaran, V.T.
2001. A study on the performance of a
few non-parametric stability measures
using pearl-millet data. Indian J. Genet,
61: 7- 11.
20. Rharrabti, Y., Garcia del moral, L.F.,
Villegas, D., and Royo, C. 2003. Durum
wheat quality in Mediterranean
environments ill: Stability and
comparative methods in analyzing G×E
interaction. Field Crop Res., 80: 141-
146.
21. Rodriguez, M., Rau, D., and Papa, R.
2007. Genotype by environment
interactions in barley (Hordeum vulgare
L.): different responses of landraces,
recombinant inbred lines and varieties to
Mediterranean environment. Euphytica.,
163(2): 231-247.
22. Saeid, A., Moghadam M., and
Mohammadi, A. 2005. Investigation of
yield stability in rics cultivars and lines
using AMMI analysis. Abstract article
of 8th Iranian Congress in Agronomy
and Plant Breeding. Gilan University,
Rasht, Pp: 432-441. (In Persian)
23. Xie, M. 1996. Selection of stable
cultivars using phenotypic variances.
Crop Sci., 36: 572-576.
24. Yan, W., and Hunt, L.A. 2002. Biplot
analysis of multi-environment trial data.
Quant. Genetics, Genomics Plant Breed.
J., 19: 289- 303.
25. Zobel, R.W., Wright, M.J., and Gauch,
H.G. 1988. Statistical analysis of yield
trial. Agr. J., 80: 388-393.