پیش‌بینی اجزای ‌عملکرد سویا با‌ استفاده از شبکه‌عصبی ‌مصنوعی تحت اثر کود‌نیتروژن و تراکم‌بوته

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 باشگاه پژوهشگران جوان و نخبگان، واحد گرگان، دانشگاه آزاد اسلامی، گرگان، ایران.

چکیده

سابقه و هدف: فاکتورهای زیادی از جمله شرایط آب‌و‌هوایی، تاریخ کاشت، آرایش کاشت، جمعیت گیاهی و تغذیه از طریق تاثیر بر روی گیاه می‌توانند باعث تنوع عملکرد گردند. همچنین از آنجا که ایران در منطقه خشک و نیمه خشک قرار گرفته‌است، مقدار مواد آلی خاک‌های آن پایین بوده و در نتیجه دارای سطوح پایین نیتروژن می‌باشند. اغلب گیاهان دراین مناطق دچار کمبود نیتروژن بوده و تأمین نیتروژن از طریق کودهای شیمیایی و آلی ضروری است، در نتیجه بررسی میزان آن برای هر محصولی از اهمیت بسزایی برخوردار‌است. همچنین افزایش تقاضای محصولات کشاورزی و مشکلات دستیابی به داده‌های میدانی، ضرورت استفاده از مدل‌های مناسب برای پیش‌بینی عملکرد محصولات کشاورزی را نمایان می‌سازد. هدف از این تحقیق بررسی تاثیر مقادیر کود نیتروژن و تراکم برعملکرد و اجزای عملکرد سویا (رقم گرگان 3) و همچنین پیش‌بینی این پارامتر‌ها با استفاده از شبکه عصبی بوده‌است.
مواد و روش ها : این پژوهش روی سویا رقم گرگان 3 بود که دارای دو فاکتور اصلی بود و در قالب طرح بلوک‌های کامل تصادفی در 3 تکرار در گرگان اجرا شد. فاکتور اول مقدار کود نیتروژن بود که در سه سطح (100، 200 و 300 کیلوگرم در هکتار) به خاک اضافه گردید و فاکتور دوم تراکم کاشت بود که در سه سطح (100000، 150000 و 200000 بوته بر هکتار) انجام شد. برای اندازه‌گیری صفات مورد نظر از قبیل: ارتفاع‌بوته، تعداد غلاف‌های‌بوته، وزن غلاف‌های بوته، وزن‌بوته، تعداد‌شاخه و قطر‌ساقه تعداد ده بوته به‌طور تصادفی در هر کرت از ردیف وسط انتخاب‌شد. تجزیه و تحلیل داده‌ها با استفاده از نرم افزار SAS و آزمون LSD در آزمایش فاکتوریل در طرح بلوک کاملا تصادفی انجام‌شد. به منظور پیش‌بینی عملکرد و اجزای عملکرد در شبکه عصبی مصنوعی از الگوریتم لونبرگ–مارکوارت برای آموزش شبکه استفاده شد. برای توسعه مدل‌های شبکه عصبی مصنوعی، تراکم کشت و مقدار کود مصرفی به عنوان ورودی و عملکرد و اجزای عملکرد سویا به عنوان خروجی در نظر گرفته‌شد.
یافته‌ها: با افزایش مقدار کود نیتروژن مصرفی و افزایش تراکم کشت ارتفاع ساقه افزایش‌یافت. با افزایش مصرف نیتروژن و کاهش تراکم کشت تعداد غلاف افزایش یافته‌است. با کاهش تراکم بوته وزن غلاف‌های بوته افزایش یافته‌است. با افزایش کود نیتروژن مصرفی و کاهش تراکم وزن بوته افزایش‌یافت. با افزایش کود نیتروژن مصرفی و کاهش تراکم تعداد شاخه افزایش‌یافت. با افزایش کود نیتروژن مصرفی و کاهش تراکم کشت سویا قطر ساقه افزایش‌یافت. شبکه عصبی با توپولوژی 7-20-2 قادر است پارامترهای مورد نظر را با ضریب تبیین 999987/0 و MSE 2497/0 پیش‌بینی کند.
نتیجه گیری: در تراکم 150000 و 200000 بوته در هکتار، وزن غلاف از نظر آماری تفاوت نداشت، این در حالی است که در تراکم 100000 بوته در هکتار این مقدار به شکل قابل توجهی بالاتر بود. عملکرد سویا به مقدار زیادی تحت تاثیر وزن و تعداد غلاف است، هرچند که وزن غلاف در تراکم کم بسیار بیشتر بود، اما ممکن است در تراکم بالا به دلیل بیشتر بودن تعداد بوته، مشکل کم بودن وزن غلاف در تراکم پایین رفع‌شود. قطر ساقه در نیتروژن دو سطح 100 و 200 کیلوگرم در هکتار از نظر آماری تفاوت چندانی‌نداشتند. از آنجایی که در تعداد غلاف و قطر ساقه مقدار کود 100 و 200 کیلو‌گرم در هکتار چندان تفاوتی ندارد، برای انتخاب بین این دو مقدار، 100 کیلوگرم در هکتار برای پایین آوردن هزینه و استفاده کمتر از کود مناسب‌تر است. شبکه عصبی با توپولوژی 7-20-2، بیشترین بازده را برای پیش‌بینی عملکرد سویا و کمترین بازده را برای پیش‌بینی تعداد شاخه داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Soybean Yield Prediction Using Artificial Neural Network (ANN) as Function of Nitrogen Fertilizer and Plant Density

نویسنده [English]

  • Ehsan Ghajarjazi 2
چکیده [English]

Background and objectives: Many factors, including climatic conditions, planting date, planting pattern, plant populations, and nutrition can cause a variety of yield through the impacts on the plant. Also, since Iran is located in arid and semi-arid regions, the amount of organic matter in its soils is low, for this reason, it has low levels of nitrogen. Most plants are faced with a lack of nitrogen in these regions, which are compensated through organic and chemical fertilizers; in this regard, nitrogen fertilizers play an important role in plant production.
Also, the increasing demand for agricultural products and problems of access to field data, reveals the necessary of using the appropriate models to predict crop yield.
The aim of this research was to study the effect of nitrogen fertilizer and plant density on yield and yield components of soybean (Variety Gorgan 3) and also prediction this parameter by using the artificial neural network.

Materials and methods: Two major factors in randomized complete block design were investigated in this research in three replications on soybean (variety Gorgan 3); nitrogen fertilizer in three levels (100, 200 and 300 kg per hectare) and plant density in three levels (100,000, 150,000 and 200,000 plants per hectare). Ten plants were randomly selected from the middle row in each plot to measure traits such as plant height, pods number per plant, pods weight per plant, plant weight, the number of branches and shoot diameter. Data analysis was conducted using SAS software and LSD test as a factorial experiment. For prediction yield and yield components in the artificial neural network, the Levenberg-Marquardt algorithm was used to train the ANN. In order to develop ANN's models, plant density and nitrogen fertilizer were used as input vectors and yield and yield components were used as the output.

Results: Shoot height increased by increasing the amount of nitrogen fertilizer and plant density, but increased pod number, plant weight, the number of branches and shoot diameter were a result of increased nitrogen and reduced density. Pods weight increased by reducing the density. Network with 2-20-7 topology could predict the parameters with R2 of 0.99987 and MSE of 0.2497.

Conclusion:. Pod weight was significantly higher with the density of 100,000 plants per hectare, while these amounts were similar statistically in 150,000 to 200,000 plants per hectare. Soybean yield is greatly influenced by the weight and pod number, although the pod weight was much more of low density; but this problem may be resolved in a high density due to the larger number of plants. No significant difference was statistically observed in shoot diameter between 100 and 200 kg N per hectare. Accordingly, 100 kg N per ha is suitable for bring down the cost and using fewer fertilizers. Network with 2-20-7 topology had the most performance in soybean yield prediction and had the least performance in a number of branch prediction.

کلیدواژه‌ها [English]

  • soybean yield
  • Yield components
  • Levenberg-Marquardt algorithm
  • Gorgan 3
1. Anajafi, M., and Farnia, A. 2008. Effect
of plant densities on morphological
characteristics and seed yield of soybean
genotypes in markazi province. New
Fin. In. Agri., 2(2): 107-115. (In
Persian)
2. Babaei Aghdam, J., Abdi, M.,
Seyfzadeh, S., and Khiavi, M. 2009. The
effect of nitrogen fertilizer and bush
density on seed yield and yield
components of azargol sunflower
cultivar in Takestan region, Iran. Agro.
J. (J. new. Agric. Sci.)., 4(14): 1-12. (In
Persian)
3. Bagheri, S., Gheysari, M., Ayoubi, S.,
and Lavaee, N. 2012. Silage maize yield
prediction using artificial neural
networks. J. Pla. Prod. (J. Agric. Sci.
Nat. Res.)., 19(4): 77-95.
4. Buttery, B.R. 1969. Effects of plant
population and fertilizer on the growth
and yield of soybeans. Can. J. Plant Sci.,
49(6): 659-673.
5. Dai, X., Huo, Z., and Wang, H. 2011.
Simulation for response of crop yield to
soil moisture and salinity with artificial
neural network. Fied. Crop. Res., 121:
441-449.
6. Danesh Shahraki, A.A.R., Kashani, A.,
Mesgarbashi, M., Nabipour, M., and
Kouhi Dehkordi, M. 2008. The effect of
plant densities and time of nitrogen
application on some agronomic
characteristic of rapeseed. Agron. J.
Pajohesh and Sazandegi., 21(2): 10-17.
(In Persian)
7. Daneshmand, A.R., Nickhah
Kuchaksarayy, H., Goldoust Khorshidi,
M., and Moradpoor, S. 2012. Study of
the quantitative and qualitative yield of
rapeseed (Brassica napus l. var hyola
401) in different rates of nitrogen and
plant density conditions. J. Res. Crop.
Sci., 4(16): 103-116. (In Persian)
8. Hosseini, S.M.T., Sioseh Mardeh, A.,
Fathi, P., and Sioseh Mardeh, M. 2007.
Application of artificial neural network
(ANN) and multiple regressions for
estimating assessing the performance of
dry farming wheat yield in ghorveh
region, kurdistan province. Agric. Res.,
7(1): 41-54.
9. Janbazi Roudsari, A., Ashouri, M., and
Amiri, E. 2015. Effect of foliar
application of methanol and nitrogen on
yield and yield components of soybean
in Guilan weather conditions. J. Plant
Ecophysiol., 7(20): 1-14. (In Persian)
10. Kashfi, S.M.H., Majnoun Hosseini, N.,
and Zeinali Khaneghah, H. 2011. Effect
of plant density and starter nitrogen
fertilizer on yield and yield components
of chickpea (Cicer arietinum L. cv.
Kourosh) at Karaj conditions. Iran J.
Pul. Res., 1(2): 11-20. (In Persian)
11. Kaul, M., Hill, R.L., and Walthall, C.
2005. Artificial neural networks for corn
and soybean yield prediction. Agric.
Syst., 85: 1-18.
12. Khademhamzeh, H.R., Karimie, M.,
Rezaie, A., and Ahmadie, M. 2004.
Effect of plant density and planting date
on agronomic characteristics, yield and
yield components in soybean. Iran. J.
Agric. Sci., 35(2): 357-367. (In Persian)
13. Khaje pour, M.R. 2004. Industrial
Plants. University Jihad of Isfahan, Pp:
93-123.
14. Mazloom, P., Sam Daliri, M., and
Khodabandeh, N. 2009. Effects of
nitrogen and plant density on yield and
yield components of different rape seed
(Brassica napus) cultivars. Iran. J. Agr.
Plant Breed., 5(1): 85-97. (In Persian)
15. Momeni Fili, P., Khoorgami, A., and
Sayyah Far, M. 2014. Effect of
vermicompost biofertilizer and plant
density on the yield and yield
components soybean in khorramabad.
Crop Physiol. J., 6(23): 113-127. (In
Persian)
16. Peyman, L., Mahmoudi, A.,
Abdollahpor, S., Moghaddam, M., and
Ranabonab, B. 2012. Controlling spray
particle size using artificial neural
networks. J. Sust. Agric. Prod. Sci.,
21(4): 75-84.
17. Rezvani Moghaddam, P., Mohammad
Abadi, A.A., and Moradi, R. 2010. The
effect of application of chemical and
organic fertilizers on yield and yield
components of sesame (Sesamum
indicum l.) in different plant densities. J.
Agr., 2(2): 256-262. (In Persian)
18. Sharifi, M., Rafiei, S., Keyhani, A., and
Omid, M. 2010. Kinetic model
simulation of thin-layer drying of orange
fruit (var. thompson) using artificial
neural network. Ira J. Food. Sci.
Technol., 7(1): 39-49.
19. Soroush, M., Ashori, M., and Amiri, A.
2015. Effect of foliar application of
nitrogen and zinc on the yield and yield
components of soybeans. J. Plant
Ecophysiol., 6(19): 18-29. (in Persian)
20. Tavakoli, A., Ansary, M.H., Khorshidi
Benam, M.B., and Asadi Rahmani, H.
2012. Yield response of soybean (Glysin
max .l) cultivars to plant population in
Bilehsavar region. First National
Conference Modern Topic in
Agriculture. Saveh, Iran. (In Persian)