تعیین غلظت بهینه سه آنزیم آنتی اکسیدان برای افزایش مقاومت به خشکی ماش (Vigna radiata L.) با استفاده از الگوریتم ژنتیک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری

2 عضو هیأت علمی دانشگاه صنعتی شاهرود

3 دانشگاه صنعتی شاهرود

چکیده

سابقه و هدف: در اثر تنش خشکی، میزان رادیکال‌های آزاد افزایش ‌یافته و گیاه دچار تنش اکسیداتیو می‌گردد. گیاه با تغییر فعالیت آنزیم‌های آنتی‌اکسیدانی‌ مثل کاتالاز، سوپراکسید دیسموتاز و گایاکول پراکسیداز (متغیرهای مستقل یا تأثیرگذار؛ Xs) رادیکال‌های آزاد را خنثی کرده و خود را از آسیب محافظت می‌کند (مقاومت به تنش اکسیداتیو ناشی از خشکی). تأثیر این محافظت، در صفاتی مثل رشد و تولید دانه (به ترتیب عملکرد بیولوژیکی و شاخص برداشت؛ متغیرهای وابسته یا تأثیرپذیر؛ Ys) منعکس می‌شود. با حداکثر نمودن تابع Ys نسبت به Xs، می‌توان ترکیبی از Xsها را به‌دست آورد که بالاترین مقدار ممکن Ys حاصل گردد. اساس این بهینه-سازی، روابط مبتنی بر تغییرات ایجاد شده در Xs و Ys بر اثر تنش خشکی می‌باشد. به لحاظ اینکه تعداد Ys در اینجا بیش از یک می-باشد، رابطه موجود از نوع چند متغیره بوده و از پیچیدگی‌های بالایی برخوردار است به ویژه اینکه بین متغیرهای Ys، همبستگی مثبتِ قوی (همبستگی بزرگتر از 95/0+) بدست نیامد. در این شرایط، استفاده از الگوریتم ژنتیک می‌تواند بر فایق آمدن بر این پیچیدگی کمک نماید. خروجی این الگوریتم می‌تواند مورد استفاده متخصصان اصلاح نباتات قرار بگیرد. به بیان دیگر، اصلاح‌گران می‌توانند با دستکاری ژنتیکی گیاه در جهت فعالیت بهینه Xs، مقاومت به خشکی را افزایش دهند. هدف از این آزمایش، انجام بهینه‌سازی مذکور در ماش بود.

مواد و روش‌ها: به منظور دقت آزمایش در اعمال تنش خشکی و از طرف دیگر افزایش تعمیم پذیری نتایج به شرایط مزرعه، در این بررسی از آزمایش گلدانی در هوای آزاد استفاده شد. گنجایش گلدان‌ها پنج کیلوگرم خاک بود که در هر کدام، پنج عدد بذر ماش (لاین VC1973a) کشت شد. پس از تنک کردن، دو گیاه در هر گلدان باقی ماند. پس از محاسبه ظرفیت زراعی خاک با استفاده از روش وزنی، چهار سطح کم آبیاری با سه تکرار شامل 80% (شاهد)، 65%، 50% و 35% ظرفیت زراعی اعمال گردید. در زمان گل‌دهی، غلظت آنزیم‌های کاتالاز، سوپراکسید دیسموتاز و گایاکول پراکسیداز (Xs) برآورد گردید. بعد از رسیدگی گیاه، شاخص برداشت و عملکرد بیولوژیکی (Ys) اندازه‌گیری شدند. برای حداکثر کردن تابع، ابتدا تابع مطلوبیت جزئی محاسبه گردید. سپس تابع مطلوبیت کل به‌دست آورده شد. با استفاده از نرم‌افزار متلب و در قالب الگوریتم ژنتیک، مقادیری از Xs که برای آن، بالاترین Ys حاصل می‌گردد، محاسبه شد.

یافته‌ها: نتایج نشان داد که تابع برخوردار از هفت مؤلفه از ضریب تبیین بالایی برخوردار بود و توانست به‌خوبی ارتباط Ys را با Xs پیش‌بینی نماید. ضریب رگرسیونی استاندارد بدست آمده برای کاتالاز مثبت بود. این امر نشان‌‌دهنده آن است که با افزایش فعالیت این آنزیم، مقاومت به خشکی (شاخص برداشت و عملکرد بیولوژیکی) نیز بیشتر می‌شود. همانند کاتالاز، تأثیر گایاکول پراکسیداز بر مقاومت به خشکی، افزایشی بود. ولی با توجه به ضرایب استاندارد شده، این تأثیر کمتر از کاتالاز به‌دست آمد. به لحاظ منفی شدن ضریب رگرسیونی استاندارد برای آنزیم سوپر اکسید دیسموتاز می‌توان گفت که با افزایش فعالیت این آنزیم، مقاومت ماش به تنش خشکی افزایش نمی‌یابد.

نتیجه‌گیری: غلظت بهینه آنزیم‌های کاتالاز، سوپراکسید دیسموتاز و گایاکول پراکسیداز برای حصول حداکثر مقاومت به خشکی ماش به ترتیب برابر با μmol H2O2 g−1 FW 956/0، AU g−1 FW 23/24، و AU g−1 FW 23/21 بود. شایان ذکر است که این غلظت‌های بهینه، همه در دامنه غلظت‌های مشاهده شده بودند. به علاوه اینکه طبق گزارش‌ها، از لحاظ فعالیت آنزیم‌های آنتی‌اکسیدان در ماش، تنوع ژنتیکی (پیش‌نیاز انجام امور اصلاحی در جهت غلظت‌های بهینه) وجود دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of optimum concentration of three antioxidant enzymes for increased drought tolerance in Mung Bean (Vigna radiata L.) using genetic algorithm

چکیده [English]

Background and objectives: The free radicals amounts are increased due to drought stress and subsequently they harm plant. The drought stress-resulted free radicals are scavenged by changing in activity of antioxidants like catalase, superoxide distmutase (SOD) and guaiacol peroxidase (GP) (regressors or independent variables; Xs). This reaction is known as resistance to (protection against) oxidative stress. This protection is reflected in traits like growth and grain production (biomass and harvest index, respectively; dependent or response variables; Ys). By maximizing Ys in relation to Xs, the combination of Xs with possible highest Ys can be obtained. This optimization comes from the relations of Ys with Xs under drought stress conditions. Due to having more than one Ys here, the relation tends to be multivariate and highly complex, especially when there is no strong positive relation (correlation greater than +0.95) between Ys variables. In such situations, the genetic algorithm can overcome the complexity. The output of mentioned algorithm can be used by plant breeders. In another words, breeders can increase drought tolerance by genetic manipulation of plant for optimum activity of Xs. This experiment was aimed to do the mentioned optimization for Mung Bean.

Materials and methods: The experiment was carried out in pots located in an open filed to increase the accuracy and possibility of generalizing the results to field results. Pots had 5 kg capacity in which 5 seeds of line VC1973a were planted. For thinning, 3 seedlings were removed, and left 2 ones. The filed capacity was determined using weight method. Treatment levels were 4 levels of low irrigation including irrigation at 80% (control), 65% 50%, and 35% of field capacity. At maturity stage, the harvest index and biomass (biological yield) (Ys) were measured. The concentration of antioxidant enzymes catalase, SOD, and GP (Xs) were determined at flowering stage. For maximizing the function, first partial desirability function was determined. Then general desirability function was calculated. The value of Xs for which the highest amount of Ys is attainable was obtained on the basis of genetic algorithm and using MATLAB software.

Results: The results indicated that a function with 7 components including the main and interactive effects of Xs could predict the relation of Ys with Xs well (Adjusted R2>0.97). The standardized regression coefficient was positive for catatlase which reveals that the drought resistance (harvest index and biomass) enhances with increasing the activity of this enzyme. Like catalase, the effect of GP was additive on drought tolerance, but considering its standardized regression coefficient, this enzyme had a lower effect than catalase. Due to negative standardized regression coefficient for SOD, it could be concluded that the drought tolerance doesn’t enhance with increasing activity of SOD.

Conclusion: The optimized concentration of catalase, SOD, and GP was 0.956 μmol H2O2 g−1 FW, 24.23 AU g−1 FW, and 21.23 AU g−1 FW, respectively for possible maximum drought tolerance. It should be mentioned that these optimized concentrations were all among observed concentrations. Moreover, reports indicate that there is genetic diversity in activity of antioxidant enzymes (prerequisite to carry out breeding programs for attaining the optimized activity) for Mung Bean.

کلیدواژه‌ها [English]

  • Optimization
  • catalase
  • Superoxide dismutase
  • guaiacol peroxidase
1. Arora, A., Sairam, R.K., and Srivastava, G.C. 2002. Oxidative stress and antioxidative
system in plants. Curr. Sci., 82: 1227–38.
2. Cavalcanti, F.R., Oliveira, J.T.A., Martins-Miranda, A.S., Viégas, R.A., and Silveira, J.A.G.
2004. Superoxide dismutase, catalase and peroxidase activities do not confer protection
against oxidative damage in salt-stressed cowpea leaves. New Phytol., 163: 563– 571.
3. Derringer, G., and Suich, R. 1980. Simultaneous optimization of several response variables.
J. Qual. Technol., 12: 214-219.
4. Ghamsari, L., Keyhani, E., and Golkhoo, S. 2007. Kinetics properties of guaiacol peroxidase
activity in Crocus sativus L. corm during rooting. Iran. Biomedical J. 11: 137-146. (In
Persian)
5. Gholipoor, M., Emamgholizadeh, S., Hassanpour, H., Shahsavani, D., Shahoseini, H., Baghi,
M., and Karimi, A. 2012. The optimization of root nutrient content for increased sugar beet
productivity using an artificial neural network. Int. J. Plant Prod., 6: 429-442.
6. Gratao, P.L., Polle, A., Lea, P.J., and Azevedo, R.A. 2005. Making the life of heavy metalstressed
plants a little easier. Functional Plant Biol., 32: 481–494.
7. Halliwell, B., and Gutteridge, J.M.C. 1989. Free Radicals in Biology and Medicine. Oxford:
Clarendon Press.
8. Harrington, E.J.R. 1965. The desirability function. Industrial Qual. Control., 21: 494-498.
9. Haupt, R., and Haupt, S.E. 1998. Practical Genetic Algorithms. John Wiley and Sons.
10. Havir, E.A., and McHale, N.A. 1987. Biochemical and developmental characterization of
multiple forms of catalase in tobacco leaves. Plant Physiol., 84: 450–455.
11. Hirt, H., and Shinozaki, K. 2004. Plant Responses to Abiotic Stress. Springer, Vienna,
Austria.
12. Khuri, A.I., and Conlon, M. 1981. Simultaneous optimization of multiple responses
represented by polynomial regression functions. Technometrics., 25: 199-204.
13. Klute, A. 1986. Water Retention: Laboratory Methods. In: C.A. BLACK (Ed.). Methods of
Soil Analysis. I. Physical and Mineralogical Methods. Madison: ASA, SSSA., Pp: 635-662.
14. Manivannan, P., Abdul-Jaleel, C., Kishorekumar, A., Sankar, B., Somasundaram, R.,
Sridharan, R., and Panneerselvam, R. 2007. Changes in antioxidant metabolism of Vigna
unguiculata L. Walp. by propiconazole under water deficit stress. Colloids and Surfaces
Biointerfaces., 57: 69–74.
15. Mohammadi, S., Heidari, M., Dahmarde, M., and Asgharipour, M.R. 2016. Effect of
nitrogen and arsenic on photosynthetic pigments, antioxidant enzyme activities and nutrient
content in safflower (Carthamus tinctorius L.). Electronic J. Crop Prod., 8: 105-120. (In
Persian)
16. Nassourou, M.A., Njintang, Y.N., Noubissié, T.J., Nguimbou, R.M., and Bell, J.M. 2016.
Genetics of seed flavonoid content and antioxidant activity in cowpea (Vigna unguiculata L.
Walp.). Crop J., 27: 105-116.
17. Noctor, G., Veljovic-Jovanovic, S.D., Driscoll, S., Novitskaya, L., and Foyer, C.H. 2002.
Drought and oxidative load in wheat leaves. A predominant role for photorespiration? Ann.
Bot., 89: 841–850.
18. Peltzer, D., Dreyer, E., and Polle, A. 2002. Temperature dependencies of antioxidative
enzymes in two contrasting species. Plant Physiol. Biochem., 40: 141–50.
19. Pignatiello, J.J. 1993. Strategies for robust multi-response quality engineering. IIE Trans.,
25: 5-15.
20. Salehzadeh, H., Gholipoor, M., Abbasdokht, H., and Baradaran, M. 2016. Optimizing plant
traits to increase yield quality and quantity in tobacco using artificial neural network. Int. J.
Plant Prod., 10: 97-108.
21. Sivakumar, T., Manavalan, R., and Valliappan, K. 2007. Global optimization using
derringer's desirability function: Enantioselective determination of ketoprofen in
formulations and in biological matrices. Acta Chromatographica., 19: 29-47.
22. Van Rossun, M.W.P.C., Alberda, M., and Van Der Plas, L.H.W. 1997. Role of oxidative
damage in tulip bulb scale micropropagation. Plant Sci., 130: 207–216.
23. Villalobos, M.A., Bartels, D., and Iturringa, G. 2004. Stress tolerance and glucose insensitive
phenotypes in Arabidopsis over expressing the CpMYB10 transcription factor gene. Plant
Physiol., 135: 309-324.
24. Vinning, G.G. 1998. A compromise approach to multi-response optimization. J. Qual.
Technol., 30: 309-313.
25. Xu, P.L., Guo, Y.K., Bai, J.G., Shang, L., and Wang, X.J. 2008. Effects of long-term chilling
on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low
light. Physiologia Plantarum., 132: 467–478.
26. Zadbood, A., Noghondarian, K., and Zadbood, Z. 2013. Multiresponse surface optimization
via harmony search algorithm. Int. J. Industrial Engineering and Prod. Res., 24: 131-136.
27. Zhang, J., and Kirkham, M.B. 1994. Drought-stress-induced changes in activities of
superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol., 35:
785-791.