واکنش صفات بیوشیمیایی و عملکردی ارقام کینوا به محلول پاشی سالیسیلیک اسید در شرایط تنش گرمای آخر فصل

نوع مقاله : مقاله کامل علمی- پژوهشی

نویسندگان

گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران.

چکیده

سابقه و هدف: کینوا، گیاهی شبه غله با ارزش غذایی بالا است. دانه‌های کینوا منبعی غنی از پروتئین، آهن، منیزیم، فسفر، فیبر و ویتامین B2 هستند و دارای محتوای متعادلی از اسیدهای آمینه ضروری برای انسان است. تغییرات اقلیمی، شوری خاک و تحمل بالای کینوا در برابر تنش‌های غیرزیستی، این گیاه را به گزینۀ مناسبی برای کشاورزی پایدار مبدل ساخته است. لذا شناخت تاریخ کاشت مناسب این گیاه با هدف به حداکثر رساندن رشد گیاه و عملکرد محصول حائز اهمیت است. از سوی دیگر سالیسیلیک اسید یک تنظیم‌کنندۀ رشد گیاهی بوده که برای مقابله با انواع تنش‌های محیطی مورد استفاده قرار می‌گیرد. بدین منظور این آزمایش با هدف بررسی عملکرد و برخی شاخص‏های بیوشیمیایی گیاه کینوا تحت تأثیر تاریخ کاشت و محلول‌پاشی با سالیسیلیک اسید طراحی گردید.
مواد و روش‌ها: آزمایش حاضر در سال زراعی 1401-1400، به‌صورت کرت‌های دوبار خردشده در قالب طرح پایه بلوک‌های کامل تصادفی با سه تکرار در مزرعۀ تحقیقاتی دانشکدۀ کشاورزی دانشگاه شهید چمران اهواز اجرا شد. در این آزمایش عامل تاریخ کاشت شامل 20 مهر، 20 آبان و 20 آذر به عنوان عامل اصلی و محلول‌پاشی سالیسیلیک اسید در سه سطح شامل عدم کاربرد، 5/1 و 3 میلی-مولار به عنوان عامل فرعی و ارقام کینوا شامل تی تی کاکا، گیزا و ردکارین به عنوان عامل فرعی فرعی مورد بررسی قرار گرفتند.
یافته‌ها: نتایج نشان داد برهم‌کنش تاریخ کاشت × محلول‌پاشی سالیسیلیک اسید × رقم در تمامی صفات مورد بررسی معنی‌دار بود. کاربرد 3 میلی‌مولار سالیسیلیک اسید در تاریخ کاشت 20 مهرماه در رقم ردکارین سبب دستیابی به بیشترین عملکرد دانه شد. بیشترین فعالیت آنزیم‌های آنتی‌اکسیدانی سوپراکسیددیسموتاز، پراکسیداز و کاتالاز در تیمار کاربرد 3 میلی‌مولار سالیسیلیک‌اسید در تاریخ کاشت 20 آذر مشاهده شد. کمترین محتوای مالون دی آلدئید نیز به تیمار کاربرد 3 میلی‌مولار سالیسیلیک اسید در تاریخ کاشت 20 مهرماه در رقم ردکارین تعلق داشت. تیمار کاربرد 3 میلی‌مولار سالیسیلیک‌اسید در تاریخ کاشت 20 مهرماه در رقم گیزا بیشترین محتوای نشاسته را نشان داد.
نتیجه‌گیری: با توجه به نتایج این پژوهش، کاربرد 3 میلی‌مولار سالیسیلیک اسید در تاریخ کاشت 20 مهرماه در رقم ردکارین سبب دستیابی به بیشترین عملکرد دانه شد، لذا کشت رقم ردکارین در تاریخ کاشت 20 مهرماه به دلیل فراهم‌سازی بهتر شرایط رشد و نموی و کاربرد 3 میلی‌مولار سالیسیلیک اسید با هدف بهبود ویژگی‌های فتوسنتزی، به منظور برآورد اهداف کاربردی کشت این گیاه تیمار برتر ارزیابی گردید. اگرچه باتوجه به رویارویی کامل کشت گیاه با شرایط محیطی و آب و هوایی و عدم فرصت کافی برای تهیه زمین پس از محصول قبلی در برخی اراضی زراعی ممکن است انتخاب تاریخ کاشت دوم را نیز اجتناب‌ناپذیر سازد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Biochemical traits and yield response of quinoa cultivars to salicylic acid foliar application under terminal heat stress

نویسندگان [English]

  • Sima Ghalambaz
  • Habib Alah Roshanfekr
  • Afrasyab Rahnama
  • Ali Monsefi
Department of Plant Production and Genetics, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Background and objectives: Quinoa is a cereal-like plant with high nutritional value. Quinoa seeds are a rich source of protein, iron, magnesium, phosphorus, fiber and vitamin B2 and have a balanced content of essential amino acids for humans. Climate change, soil salinity and high tolerance of quinoa to abiotic stresses have made this plant a suitable option for sustainable agriculture. Therefore, knowing the appropriate sowing date of this plant is important in order to maximize plant growth and crop yield. On the other hand, salicylic acid is a plant growth regulator that is used to deal with various environmental stresses. For this purpose, this experiment was designed to investigate the yield and some biochemical indices of quinoa under the influence of sowing date and foliar spraying with salicylic acid.
Materials and Methods: This experiment carried out in the crop year 2021-2022, in the form of split split plots in a randomised complete block design with three replications in the research farm of the Faculty of Agriculture, Shahid Chamran University of Ahvaz. In this experiment, three factors were investigated: a) sowing date including October 12, November 11, and December 11 as the main factor, b) foliar application of salicylic acid at three levels including no application, 1.5 mM and 3 mM as a sub-factor, and c) quinoa cultivars including Titicaca, Giza and Redcarin as a sub-sub-factor.
Results: The results of the variance analysis of traits showed a significant difference in the interaction effect of sowing date × salicylic acid foliar application × cultivar in all studied traits. The application of 3 mM salicylic acid on the sowing date of October 12 in the Redcarin cultivar resulted in the highest grain yield. The highest activity of antioxidant enzymes, superoxide dismutase, proxidase and catalase, was obtained in the treatment of 3 mM salicylic acid on the sowing date of December 11. The lowest malondialdehyde content also belonged to the treatment of 3 mM salicylic acid on the sowing date of October 12 in the Redcarin cultivar. The treatment of 3 mM salicylic acid on the sowing date of October 12 in the Giza cultivar showed the highest starch content.
Conclusion: According to the results of this study, the application of 3 mM salicylic acid on the planting date of October 12 in the Redcarin cultivar resulted in the highest grain yield, therefore, the cultivation of this plant (Redcarin cultivar) on the planting date of October 12 was evaluated as the superior treatment due to the provision of better growth and development conditions and the application of 3 mM salicylic acid with the aim of improving photosynthetic characteristics, in order to achieve the practical goals of cultivating this plant. Of course, it should be noted that considering the complete confrontation of plant cultivation with environmental and climatic conditions and the lack of sufficient time to prepare the land after the previous crop in some agricultural lands, the choice of a second planting date (November 11) may also be unavoidable.

کلیدواژه‌ها [English]

  • Antioxidant enzymes
  • Protein percentage
  • Starch percentage
  • Seed yield
  • Malondialdehyde content
  1. De Santis, G., Maddaluno, C., & D’Ambrosio, T. (2016). Characterisation of quinoa (Chenopodium quinoa Willd.) accessions for the saponin content in Mediterranean environment. Italian Journal of Agronomy, 11, 277–281. DOI:10.4081/ija.2016.774
  2. Fathi A., & Kardoni F. (2020). The importance of quinoa (Chenopodium quinoa willd.) cultivation in developing countries: a review: Cercetări Agronomice în Moldova, 53(3): 337-356. DOI:10.46909/cerce-2020-030
  3. Navruz-Varli, S., & Sanlier, N. (2016). Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Sciences, 69, 371–376. https://doi.org/10.1016/j.jcs.2016.05.004
  4. Sharma, G., & Lakhawat, S. (2017). Nutrition facts and functional potential of quinoa (Chenopodium quinoa), an ancient Andean grain. Journal of Pharmacognosy and Phytochemistry, 6(4), 1488–1489.
  5. Choukr-Allah, R., Rao, N.K., & Hirich, A. (2016). Quinoa for marginal environments: toward future food and nutritional security in MENA and Central Asia regions. Frontiers in Plant Sciences, 7, 346. https://doi.org/10.3389/fpls.2016.00346
  6. Ruiz, K.B., Biondi, S., & Oses, R. (2014). Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development, 34, 349–359.
  7. Rahnama, A., Salehi, F., Meskarbashee, M., Mehdi Khanlou, K., Ghorbanpour, M., & Harrison, M.T. (2024). High temperature perturbs physicochemical parameters and fatty acids composition of safflower (Carthamus tinctorius L.). BMC Plant Biology, 24, 1080. https://doi.org/10.1186/s12870-024-05781-3
  8. Baum, M.E., Licht, M.A., Huber, I., & Archontoulis, S.V. (2020). Impacts of climate change on the optimum planting date of different maize cultivars in the central US Corn Belt. European Journal of Agronomy, 119, 126101. https://doi.org/10.1016/j.eja.2020.126101
  9. Humphreys, E., & Gaydon, D.S. (2015). Options for increasing the productivity of the rice–wheat system of northwest India while reducing groundwater depletion. Part 2. Is conservation agriculture the answer? Field Crop Research, 173, 68–80. DOI:10.1016/j.fcr.2014.11.019
  10. Rajinder, P., Mahajan, G., Sardana, V., & Chauhan, B.S. (2017). Impact of sowing date on yield, dry matter and nitrogen accumulation, and nitrogen translocation in dry- seeded rice in North-West India. Field Crop Research, 206, 138–148. DOI:10.1016/j.fcr.2017.01.025
  11. Ghobadi, M., & Norouzi, Y. (2024). Investigation the effects of planting dates on agro-physiological characteristics of quinoa (Chenopodium quinoa willd) as a second crop in the climatic conditions of Kermanshah. Cereal Biotechnology and Biochemistry, 3(1), 74-94. DOI: 10.22126/cbb.2024.10354.1067 [In Persian]
  12. Etebari, A.R., Galeshi, S., Anagholi, A., & Torabi, B. (2022). Investigating the effect of planting date and density on quinoa plant in saline and rainfed conditions. Crop Production Journal, 15(2), 219-236. DOI: 10.22069/EJCP.2022.19996.2489 [In Persian]
  13. Mohammadi, H., Rahimpour, B., Pirastehanosheh, H., & Race, M. (2022). Salicylic acid manipulates ion accumulation and distribution in favor of salinity tolerance in Chenopodium quinoa. International Journal of Environmental Research and Public Health, 19(3), 1576. DOI: 10.3390/ijerph19031576
  14. Jahanbkhsh, S., Khajoei-Nejad, G., Moradi, R., & Naghizadeh, M. (2020). Effect of planting date and salicylic acid on some quantitative and qualitative traits of quinoa as affected by drought stress. Environmental Stresses in Crop Sciences13(4), 1149-1167. http://dx.doi.org/10.22077/escs.2020.2313.1595 [In Persian]
  15. Vlot, C.A., Dempsey, M.A., & Klessing, D.F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual review of Phytopathology, 47, 177–206. DOI: 10.1146/annurev.phyto.050908.135202
  16. Bideshki, A., & Arvin, M.J. (2010). Effect of salicylic acid (SA) and drought stress on growth, bulb yield and allicin content of garlic (Allium sativum) in field. Plant Ecophysiology, 2, 73-79.
  17. Heidari, N., Shekari, F., Golchin, A., & Sehati, N. (2020). Interaction of nitrogen stress and salicylic acid on physiologic and photosynthetic characteristics of borage (Borago officinials L.). Journal of Plant Process and Function, 8(34), 37-49. http://jispp.iut.ac.ir/article-1-1238-en.html [In Persian]
  18. Hossini, F., Meskarbashee, M., & Rahnama, A. (2024). The effect of foliar application of cytokinin and salicylic acid on yield and physiological characteristics of sunflower under drought stress conditions. Journal of Plant Production Research, (In press), doi: 10.22069/jopp.2024.22633.3163 [In Persian]
  19. Abdolahi, M., Shekari, F., Saba, J., & Zangani, E. (2018). Seed priming with salicylic acid enhanced gas exchanges parameters and biological yield of wheat under late sowing date. Agriculture and Forestry, 64, 145-157. DOI:10.17707/AgricultForest.64.1.17
  20. Gholami, S., Rostami, T., Ahmadi, K., Amini Dehaghi, M., & Bagheri, M. (2021). The effect of salicylic acid on germination of tow genotypes of quinoa (Chenopodium quinoaWilld.) under drought stress. Environmental Stresses in Crop Sciences14(1), 157-170. DOI: 10.22077/escs.2020.2658.1696 [In Persian]
  21. Ghalambaz, S., Roshanfekr, H., Rahnama Ghahfarokhi, A., & Monsefi, A. (2024). Effect of Salicylic Acid Foliar Application on Physiological Indices and Induction of Terminal Heat Stress Tolerance of Quinoa in Ahvaz. Iranian Journal of Field Crops Research, 22(2), 137-154.
  22. Abd Allah, M.M.SH., El-Bassiouny, H.M.S., Elewa, T.A.E., & El-Sebai, T.N. (2015). Effect of salicylic acid and benzoic acid on growth, yield and some biochemical aspects of quinoa plant grown in sandy soil. International Journal of ChemTech Research, 8(12), 216-225.
  23. Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiology, 98, 1222-1227. DOI: 10.1104/pp.98.4.1222
  24. Dazy, M., Jung, V., Ferard, J., & Masfaraud, J. (2008). Ecological recovery of vegetation on a coke-factory soil: Role of plant antioxidant enzymes and possible implication in site restoration. Chemosphere, 74(1), 57-63. DOI: 10.1016/j.chemosphere.2008.09.01
  25. Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acryl amide gels. Analytical Biochemistry, 44(1), 276- 286. DOI: 10.1016/0003-2697(71)90370-8

26.Stewart, R.C., & Beweley, J.D. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 65(2), 245-248. DOI: 10.1104/pp.65.2.245

27.Sheligl, H.G. (1986). Die verwertung orgngischer souren durch chlorella lincht. Plant Sciences, 41, 47-51.

28.Mæhre, H.K., Dalheim, L., Edvinsen, G.K., Elvevoll, E.O., & Jensen, I.J. (2018). Protein determination—method matters. Foods, 7(1), 5. DOI: 10.3390/foods7010005

  1. Salehi, F., Rahnama, A., Meskarbashee, M., Mehdi Khanlou, K., & Ghorbanpour, M. (2023). Physiological and metabolic changes of safower (Carthamus tinctorius L.) cultivars in response to terminal heat stress. Journal of Plant Growth Regulations, 42, 6585–600.

30.Goodarzian Ghahfarokhi, M., Meskarbashee, M., Rahnama, A., & Smith, D. L. (2020). Evaluation of physiological and yield characteristics of safflower cultivars in response to salicylic acid foliar application and late- season heat stress. Iranian Journal of Field Crop Science, 51(3), 59-72. doi:10.22059/ijfcs.2019.279743.654603

31.Hayat, Q., Hayat, S.H., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment. A review: Environmental and Experimental Botany, 68(1), 14-25. DOI:10.1016/j.envexpbot.2009.08.005

  1. Sepahvand, N., & Sheikh, F. (2011). Familiarity with the new quinoa plant. National Conference on Natural Products and Medicinal Plants. 4-5 Oct. Bojnourd. [In Persian]
  2. Shamsaddin Saied, M., & Moradi, R. (2018). Effect of Organic Amendments on Some Quantitative and Qualitative Characteristics of Fennel (Foeniculum vulgar L.) as Affected by Different Irrigation Levels. Agricultural Science and Sustainable Production, 28(4), 105-123.
  3. Clement, M., Leonhardt, N., Droillard, M., Reiter, I., Montillet, J., Genty, B., Lauriere, C., Nussaume, L., & Noel, L.D. (2011). The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in Arabidopsis. Plant Physiology, 156(3), 1481-1492. DOI:10.1104/pp.111.174425.
  4. Sheikh Mamo, B., Rahnama, A., Hassibi, P. (2023). Evaluation of biochemical traits and seed yield of sunflower (Helianthus annuss L.) cultivars in response to terminal heat stress in Ahvaz, Iran. Iranian Journal of Crop Sciences, 25(3), 275-293. http://agrobreedjournal.ir/article-1-1323-en.html [In Persian]
  5. Xuejun, H., Weitao, L.V., Bin, L., & Zhang, M. (2011). Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiology, 156(4), 1921-1933. DOI:10.1104/p.111.175810
  6. Simaei, M., Khavari-Nejad, R.A., Saadatmand, S., Bernard, F., & Fahimi, H. (2011). Effects of salicylic acid and nitric oxide on antioxidant capacity and proline accumulation in Glycine max L. treated with NaCl salinity. African Journal of Agricultural Research, 6, 3775-3782.
  7. Hasanuzzaman, M., Matin, M.A., Fardus, J., Hasanuzzaman, M., Hossain, M.S., & Parvin, K. (2019). Foliar application of salicylic acid improves growth and yield attributes by upregulating the antioxidant defense system in Brassica campestris plants grown in lead-amended soils. Acta Agrobotany, 72, 1765. DOI: 10.5586/aa.1765
  8. Kaur, H., & Hussain, S.J. (2020). Cadmium: Uptake in Plants and Its Alleviation Via Crosstalk Between Phytohormones and Sulfur. In Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants. Mishra, K., Tandon, P.K., Srivastava, S., Eds.; Springer: Singapore. DOI:10.1007/978-981-15-8636-1_15
  9. Zaheer, M.M., Yasin, N.A., Ahmad, S.R., Khan, W.U., Ahmad, A., Ali, A., & Rehman, S.U. (2018). Amelioration of cadmium stress in gladiolus (Gladiolus grandiflora L.) by application of potassium and silicon. Journal of Plant Nutrition, 41, 461–476. 10.1080/01904167.2017.1385808

41.Ding, Y., Bai, X., Ye, Z., Ma, L., & Liang, L. (2019). Toxicological responses of Fe3O4 nanoparticles on Eichhornia crassipes and associated plant transportation. Science of the Total Environment, 671, 558-567. https://doi.org/10.1016/j.scitotenv.2019.03.344

42.Jafarinasab, A.S., Maddah hosseini, S., & Azari, A. (2023). Cold stress effect on some physiological characteristics and antioxidant systems in some grass pea (Lathyrus sativus) ecotypes. Plant Process and Function, 12(53), 299-314.
URL: http://jispp.iut.ac.ir/article-1-1713-fa.html [In Persian]

  1. Oliver, S.N., Van Dongen, J.T., Alfred, S.C., Mamun, E.A., Zhao, X., Saini, H.S., Fernandes, S.F., Blanchard, C.L., Sutton, B.G., & Geigenberger, P. (2005) Cold -induced repression of the rice anther -specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant Cell Environment, 28, 1534 -1551. DOI: 10.1111/j.1365-3040.2005.01390.x

44.Pearce, R.S., & Fuller, M.P. (2001) Freezing of barley studied by infrared video thermography. Plant Physiology, 125, 227 -240. DOI: 10.1104/pp.125.1.227

  1. Pescador, D.S., Sánchez, A.M., Luzuriaga, A.L., Sierra-Almeida, A., & Escudero, A. (2018). Winter is coming: plant freezing resistance as a key functional trait for the assembly of annual Mediterranean communities. Environmental and Experimental Botany, 121(2), 335-344. https://doi.org/10.1093/aob/mcx166

46.Naoe, A.M.L., Peluzio, J.M., & Campos, L.J.M. (2021). Effect of water deficit and sowing date on oil and protein contents in soybean co-inoculated with Azospirillum brasilense. Pesquisa Agropecuária Tropical (PAT), 51. https://doi.org/10.1590/1983-40632021v5166584 

  1. Pípolo, A.E., Hungria, M., & Franchini, J.C. (2015). Teores de óleo e proteína em soja: fatores envolvidos e qualidade para a indústria. Embrapa Soja-Comunicado Técnico (INFOTECA-E). http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1025298
  2. Kumar, R.R., Goswami, S., Sharma, S.K., Singh, K., Gadpayle, K.A., Kumar, N., Rai, G.K., Singh, M., & Rai, R.D. (2012). Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. International Journal of Plant Physiology and Biochemistry, 4(4), 83-91. URL: http://www.academicjournals.org/IJPPB/abstracts/abstracts/abstracts2012/March/Kumar%20et%20al.htm

49.Yarnia, M. (2010). Sowing dates and density evaluation of Amaranth as a new crop. Advances in Environmental Biology, 4(1), 41-46.

  1. Curti, R.N., Sanahuja, M., Del, C., & Vidueiros, S.M. (2018). Trade‐off between seed yield components and seed composition traits in sea level quinoa in response to sowing dates. Cereal Chemistry, 95(5), 734–741. DOI:10.1002/cche.10088

51.Graf, B.L., Rojo, L.E., & Delatorre‐Herrera, J. (2016). Phytoecdysteroids and flavonoid glycosides among Chilean and commercial sources of Chenopodium quinoa: Variation and correlation to physico‐chemical characteristics. Journal of the Science of Food and Agriculture, 96, 633–643. DOI: 10.1002/jsfa.7134

52.Miranda, M., Vega-Gálvez, A., & Martínez, E.A. (2013). Influence of contrasting environments on seed composition of two quinoa genotypes: nutritional and functional properties. Chilean Journal of Agricultural Research, 73, 108–116. URI: http://hdl.handle.net/1807/46047