مقایسه عملکرد دانه و زیست‌توده ارزن‌های مرواریدی و پروسو در شرایط کشت آبی و دیم و در تاریخ‌های مختلف کشت

نوع مقاله : مقاله کامل علمی- پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم کشاورزی، دانشگاه گیلان

2 دانشیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران.

3 پژوهشگر، موسسه تحقیقات ثبت و گواهی بذر و نهال، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

سابقه و هدف: ارزن‌ها گروهی از غلات دانه‌ریز هستند که به‌دلیل توانایی تحمل تنش خشکی، نیاز آبی اندک و کارآیی زیاد در استفاده از آب، می‌توانند در کشت‌های آبی و دیم مناطق خشک و نیمه خشک تولید علوفه خوب و پایداری داشته باشند. با این حال، اطلاعات اندکی از مدیریت کشت آنها در شرایط دیم مناطق مدیترانه‌ای در دسترس است. بنابراین، پژوهش کنونی با هدف مقایسه عملکرد دانه و زیست‌توده دو گونه ارزن مرواریدی (Pennisetum glaucum (L.) R. Br.) و پروسو (Panicum miliaceum L.) در شرایط کشت آبی و دیم در رشت و در مزرعه پژوهشی دانشکده علوم کشاورزی دانشگاه گیلان انجام شد.
مواد و روش ها: این آزمایش به صورت کرت‌های یک بار خرد شده فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار اجرا شد. در این پژوهش دو رژیم آبیاری (دیم و فاریاب) در کرت‌های اصلی و ترکیب دو ارزن مرواریدی (رقم مهران) و پروسو (رقم پیشاهنگ) و چهار تاریخ کشت (14 خرداد، 16 تیر، 14 مرداد و 15 شهریور) به صورت فاکتوریل در کرت‌های فرعی در نظر گرفته شدند.
یافته ها: تجزیه واریانس داده‌ها نشان داد که برهمکنش تاریخ‌کاشت و رژیم آبیاری و همچنین، برهمکنش تاریخ کاشت و رقم از نظر آماری بر عملکرد زیست‌توده، عملکرد دانه، ماده خشک خوشه، تعداد دانه پر و وزن هزار دانه تاثیر معنی‌دار داشته اند. مقایسه میانگین داده‌های برهمکنش رژیم آبیاری و تاریخ کاشت نشان داد که در هر دو رژیم آبیاری مورد مطالعه، با تاخیر در کاشت از 14 خرداد به 15 شهریور از میانگین عملکرد دانه و زیست توده کاسته می‌شود. با این حال، نتایج متفاوتی در تاریخ‌های کاشت به دست آمد. در تاریخ‌های کاشت 14 خرداد، 14 مرداد و 15 شهریور، میانگین عملکرد دانه و زیست‌توده در کشت آبی و دیم مشابه بود اما در تاریخ کاشت 16 تیر و در کشت دیم، به دلیل کاهش شدید بارش‌ها (24 درصد) و عدم تامین نیاز آبی گیاهان، عملکرد دانه و زیست توده به طور چشمگیری کاهش یافت. بررسی برهمکنش رقم و تاریخ کاشت نشان داد که ارزن مرواریدی مهران در مقایسه با ارزن پروسو رقم پیشاهنگ توانایی بیشتری در تولید عملکرد دانه و زیست توده دارد. در ارزن مهران بیشترین عملکرد دانه و زیست توده به صورت مشترک از تاریخ‌های کاشت 14 خرداد (به ترتیب عملکرد دانه و زیست توده 1365.76 و 7261.05 کیلوگرم در هکتار) و 16 تیر (به ترتیب عملکرد دانه و زیست توده 1290.91 و 7240.42 کیلوگرم در هکتار) به دست آمد. در ارزن پروسو رقم پیشاهنگ بیشترین عملکرد دانه و زیست توده به ترتیب با میانگین 1165.66 و 6349.91 کیلوگرم در هکتار در تاریخ کاشت 14 خرداد ثبت شد.
نتیجه گیری: در مجموع به دلیل برتری ارزن مرواریدی (رقم مهران) در همه ویژگی‌های مورد در مقایسه با ارزن پروسو (رقم پیشاهنگ) و عدم تفاوت عملکرد دانه و زیست‌توده آن در تاریخ کشت 14 خرداد در هر دو رژیم آبیاری دیم و فاریاب که بیانگر همنوایی مناسب مراحل رشد و نمو گیاه با شرایط مطلوب محیطی است، پیشنهاد می‌شود برای صرفه جویی در مصرف آب، این گیاه به صورت دیم در تاریخ 14 خرداد کشت شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of grain and forage yields of pearl millet and proso millet under irrigated and rainfed conditions across sowing dates

نویسندگان [English]

  • Fatemeh Ghorbannezhad 1
  • Mohsen Zavareh 2
  • Mohammad Rahmani 3
1 Department of Plant Production Engineering and Genetics, Faculty of Agricultural Sciences, University of Guilan.
2 Dept. of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan.
3 Researcher, Seed and Plant Certification and Registration Institute, Karaj, Iran
چکیده [English]

Background and objectives: Millets, a group of small-seeded cereals, exhibit remarkable performance in arid and semi-arid regions due to their high drought tolerance, low water requirements, and efficient water use. They are capable of producing substantial and stable forage yields under both irrigated and rainfed conditions. However, there is limited information on the management of millet cultivation under rainfed conditions in Mediterranean regions. This study aimed to compare the grain and forage yields of two millet species, pearl millet (Pennisetum glaucum (L.) R. Br.) and proso millet (Panicum miliaceum L.), under irrigated and rainfed conditions in Rasht.
Materials and methods: The experiment was conducted during the 2018-2019 growing season at the research farm of the Faculty of Agricultural Sciences, University of Guilan, using a split-plot factorial design within a randomized complete block design with four replications. The main plots consisted of two irrigation regimes (rainfed and irrigated), and the sub-plots comprised a combination of two millet species (pearl millet cv. Mehran and proso millet cv. Pishahang) and four sowing dates (June 4, July 7, August 5, and September 6).
Results: Analysis of variance revealed that the interaction between sowing date and irrigation regime, as well as the interaction between sowing date and species, significantly affected biomass yield, grain yield, panicle dry matter, number of filled grains, and thousand-grain weight. The number of panicles per plant was significantly influenced by the interaction between sowing date and species. The comparison of mean interaction effects of irrigation regime and sowing date indicated that in both irrigation regimes, delaying sowing from June 4 to September 6 led to a decrease in average grain and biomass yields. However, the results varied across different sowing dates. Specifically, on June 4, August 5, and September 6, the average grain and biomass yields under both irrigated and rainfed conditions were similar. In contrast, on July 7, due to a significant reduction in rainfall, the water needs of the plants under rainfed conditions were not met, resulting in substantial decreases in grain and biomass yields due to drought stress and insufficient moisture supply. Furthermore, the results of the interaction between species and sowing date indicated that pearl millet cv. Mehran had a higher potential for grain and biomass yields compared to proso millet cv. Pishahang. For pearl millet, the highest grain and biomass yields were achieved on the sowing dates of June 4 (1365.76 kg/ha) and July 7 (1290.91 kg/ha). For proso millet cv. Pishahang, the highest grain and biomass yields were recorded on June 4, with an average of 1165.66 kg/ha and 6349.91 kg/ha, respectively. Overall, the findings of this experiment demonstrated that pearl millet (cv. Mehran) outperformed proso millet (cv. Pishahang) in all evaluated traits.
Conclusion: The lack of significant differences in grain and forage yields of pearl millet sown on June 4 under both rainfed and irrigated conditions suggests optimal synchronization of the plant's growth stages with favorable environmental conditions. Therefore, it is recommended to cultivate pearl millet (cv. Mehran) under rainfed conditions with a sowing date of June 4 to conserve water.

کلیدواژه‌ها [English]

  • Day Length
  • Forage Production
  • Millets
  • Rainfed Farming
  • Sowing Date
  1. Wang, X,. Du, R,. Cai, H,. Lin, B,. Dietrich, JP,. Stevanović, M,. Lotze-Campen, H., & Popp, A. (2024). Assessing the impacts of technological change on food security and climate change mitigation in China’s agriculture and land-use sectors. Environmental Impact Assessment Review, 107, 1-9.
  2. Singh, MK,. Kumar, V., & Prasad, S. (2017). Evaluation of finger millet varieties under rainfed region of Eastern India. Journal of AgriSearch, 4(3),179-83.
  3. Ragab, R., & Prudhomme, C. (2002). SW—soil and water: Climate change and water resources management in arid and semi-arid regions: prospective and challenges for the 21st century. Biosystems Engineering, 81(1), 3-34
  4. Kouchaki, A.R., & Nasiri, M.M. (2008). Impacts of climate change and CO2 concentration on wheat yield in Iran and adaptation strategies. Iranian Journal of Field Crops Research, 6(1),139-53. [in Persian].
  5. Sobhani, B., & Safarianzengir, V. (2024). Obviousization and estimation of climate change in the coming years of Iran. Journal of Environmental Science Studies, 8(4),7243-63. [in Persian].
  6. Habiyaremye, C,. Barth, V,. Highet, K,. Coffey, T., & Murphy, K.M. (2017). Phenotypic responses of twenty diverse proso millet (Panicum miliaceum) accessions to irrigation. Sustainability, 9(3),1-14.
  7. Omoregie, A.U., Nwajei, S.E., & Iredia, B.E. (2020). Effects of planting density on the growth and forage yield of two varieties of millet (Pennisetum typhoides F.) grown in Ekpoma, Nigeria. Sustainability, Agri, Food and Environmental Research, 8(2),118-28.
  8. Wilson, J. (1983). Effects of water stress on in vitro dry matter digestibility and chemical composition of herbage of tropical pasture species. Australian Journal of Agricultural Research, 34, 377-90
  9. Habiyaremye, C,. Matanguihan, J.B., D’Alpoim Guedes, J., Ganjyal, G.M., Whiteman, M.R., Kidwell, K.K., & Murphy, K.M. (2017). Proso millet (Panicum miliaceum) and its potential for cultivation in the Pacific Northwest, US: A review. Frontiers in Plant Science, 7,1-17
  10. Serba, D.D., Perumal, R., Tesso, T.T., & Min, D. (2017). Status of global pearl millet breeding programs and the way forward. Crop Science, 57(6), 2891-905.
  11. Shantz, H.L., & Piemeisel, L.N. (1927). The water requirement of plants at Akron, Colo. Journal of Agricultural Research, 34,1093-190.
  12. Farooq, M., & Siddique, K.H. (2023). Proso millet (Panicum miliaceum). In: Rajasekaran R,. Francis N,. Mani V & Ganesan J. Neglected and Underutilized Crops: Future Smart Food. 1 ed: Elsevier; 247-78.
  13. Ventura, , Poggi, G.M., Vignudelli, M., Bosi, S., Negri, L., Fakaros, A., & Dinelli, G. (2022). An assessment of proso millet as an alternative summer cereal crop in the mediterranean basin. Agronomy, 12(3),1-18.
  14. Vadez, V., Hash, T., Bidinger, F., & Kholova, (2012). Phenotyping pearl millet for adaptation to drought. Frontiers in Physiology, 3, 1-11.
  15. Ullah, A., Ahmad, A., Khaliq, T., & Akhtar, J. (2017). Recognizing production options for pearl millet in Pakistan under changing climate scenarios. Journal of Integrative Agriculture, 16(4), 762-773.
  16. Prasad, P., Djanaguiraman, M., Stewart, Z., & Ciampitti, I. (2020). Agroclimatology of maize, sorghum, and pearl millet. In: Hatfield JL,. Sivakumar MVK & Prueger JH. Agroclimatology: Linking Agriculture toClimate, 60, 201-41.
  17. Uppal, RK., Wani, S.P., Garg, K.K., & Alagarswamy, G. (2015). Balanced nutrition increases yield of pearl millet under drought. Field Crops Research, 177, 86-97
  18. Joshi, N. (1988). Millet yield under natural drought conditions on arid loamy sand soil: Cultivar differences. Effect of planting dates, and relative energy yield equivalencies. Arid Land Research and Management, 2(3), 203-16.
  19. Reddy, B.S,. Reddy, B.R,. Kumari, C.R,. Sankar, G.M,. Reddy, Y.A., & Reddy, A.M. (2019). Effect of date of sowing and rainfall on sustainability of yield and rainwater use efficiency in cereal crops under arid alfisols. Journal of Agrometeorology, 21(2), 203-9.
  20. Lu, H-d,. Xue, J-q., & Guo, D-w. (2017). Efficacy of planting date adjustment as a cultivation strategy to cope with drought stress and increase rainfed maize yield and water-use efficiency. Agricultural Water Management, 179, 227-35.
  21. Srikanya, B., Revathi, P., Reddy, M.M., & Chandrashaker, K. (2020). Effect of sowing dates on growth and yield of foxtail millet (Setaria italica) varieties. International Journal of Current Microbiology and Applied Sciences, 9(4), 3243-51.
  22. Gueye, M., Kanfany, G., Fofana, A., Noba, K., & Grove, J. (2015). Effect of planting date on growth and grain yield of fonio millet (Digitaria exilis Stapf) in the Southeast of Senegal. International Journal of Biological and Chemical Sciences, 9(2), 581-92 .
  23. Jadhav, J., Mokashi, D., Shewale, M., Gaikwad, C., & Patil, J. (1994). Thermal requirement for pearl millet Annals of Arid Zone, 33, 299-302 .
  24. Dera, J., & Mativavarira, M. (2018). Effect of sowing date and variety on sorghum yield in different regions of Zimbabwe. Journal of Advanced Plant Sciences, 1(2), 1-6.
  25. Nielsen, D.C., & Vigil, M.F. (2017). Water use and environmental parameters influence proso millet yield. Field Crops Research, 212, 34-44.
  26. Maas, A., Hanna, W., & Mullinix, B. (2007). Planting date and row spacing affects grain yield and height of pearl millet Tifgrain 102 in the Southeastern coastal plain of the United States. Journal of SAT Agricultural Research, 5, 1-4.
  27. Nielsen, D.C., Vigil, M.F., & Benjamin, J.G. (2009). The variable response of dryland corn yield to soil water content at planting. Agricultural water management, 96(2), 330-6.
  28. Nelson, L., & Fenster, C. (1983). Seedbed preparation and planter comparisons for proso Millet following wheat Agronomy Journal, 75(1), 9-13.
  29. Tsimba, R., Edmeades, G.O., Millner, J.P., & Kemp, P.D. (2013). The effect of planting date on maize grain yields and yield components. Field Crops Research, 150,135-44
  30. Agricultural Statistics. (2022). Ministry of agriculture, Center for information and communication technology, 60 p. [in Persian].
  31. Mehrani, A., Mosavat, A., Shooshi, A.A., Abasi, M.R., Najafinezhad, H., Tabatabaei, A., & Ghasemi, A. (2013). Pishahang, A new common millet cultivar for short growing period areas of Iran. Seed and Plant, 4(1-29), 861-3 [in Persian].
  32. Ataei, R., Mahrokh, A., & Razmi-Charmkhoran, M. (2021). Evaluation of pearl millet mini core collection for forage yield related traits. Cereal Research, 11(2), 163-74 [in Persian].
  33. Ataei, R., Golzardi, F., & Razmi-Charmkhoran, M. (2021). Genetic analysis of forage yield and related traits in pearl millet. Cereal Research, 10(4), 351-62 [in Persian].
  34. Rezaei, E.E., Gaiser, T., Siebert, S., & Ewert, F. (2015). Adaptation of crop production to climate change by crop substitution. Mitigation and Adaptation Strategies for Global Change, 20(7),115574 [in Persian].
  35. Lu, H., Qiao, Y., Gong, X., Li, H., Zhang, Q., Zhao, Z., & Meng, L. (2015). Influence of drought stress on the photosynthetic characteristics and dry matter accumulation of hybrid millet. Photosynthetica, 53(2), 306-11.
  36. Assefa, Y., Staggenborg, S.A., & Prasad, V.P. (2010). Grain sorghum water requirement and responses to drought stress: A review. Crop Management, 9(1),1-11
  37. Twidwell, E., Boe, A., & Kephart, K. (1992). Planting date effects on yield and quality of foxtail millet and three annual legumes. Canadian Journal of Plant Science, 72(3),819-27
  38. Uzoma, A., Eze, P., Alabi, M., Mgbonu, K., Aboje, J., & Osunde, A. (2010). The effect of variety and planting date on the growth and yield of pearl millet in the southern guinea savanna zone of Nigeria. Journal of Agriculture and Veterinary Science, 2,122-9
  39. Zhang, W., Wang, B., Liu, B., Chen, Z., Lu, G., Bai, C., & Ge, Y. (2023). The effects of meteorological factors on grain yield of Foxtail Millet (Setaria italica) under different water supply conditions. Crops, 3(1),53-62 .
  40. Pale, S., Mason, S.C., & Galusha, T.D. (2003). Planting time for early-season pearl millet and grain sorghum in Nebraska. Agronomy Journal, 95(4),1047-53 .
  41. Muchow, R.C., Sinclair, T.R., & Bennett, J.M. (1990). Temperature and solar radiation effects on potential maize yield across locations. Agronomy Journal, 82(2), 338-43.
  42. Monteith, J.L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 281(980), 277-94
  43. Zegada-Lizarazu, W., & Iijima, M. (2005). Deep root water uptake ability and water use efficiency of pearl millet in comparison to other millet species. Plant Production Science, 8(4),454-60
  44. Bidinger, F.R., & Hash, C.T. (2004). Physiology and biotechnology integration for plant breeding. In: Nguyen HT & Blum A. Pearl millet. 1 ed. New York: CRC Press; 700.
  45. Patil, J.V. (2016). Millets and Sorghum: biology and genetic improvement. In: Reddy PS. Pearl Millet, Pennisetum glaucum (L) R Br: John Wiley & Sons; 49-86.
  46. Krishna, S.S., Reddy, Y.N., & Kumar, R.R. (2021). Assessment of traits for grain yield under drought in finger millet. Plant Physiology Reports, 26, 84-94.
  47. Maman, N., Lyon, D.J., Mason, S.C., Galusha, T.D., & Higgins, R. (2003). Pearl millet and grain sorghum yield response to water supply in Nebraska. Agronomy Journal, 95(6),1618-24 .
  48. Yadav, O., & Rai, K. (2013). Genetic improvement of pearl millet in India. Agricultural Research, 2,275-92.
  49. Abreha, KB., Enyew, M., Carlsson, A.S., Vetukuri, R.R., Feyissa, T., Motlhaodi, T., Ng’uni, D., & Geleta, M. (2022). Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress. Planta, 255,1-23.
  50. Maman, N., Mason, S.C., Lyon, D.J., & Dhungana, P. (2004). Yield components of pearl millet and grain sorghum across environments in the Central Great Plains. Crop Science, 44(6),2138-45.
  51. Gavit, H., Rajemahadik, , Bahure, G., Jadhav, M., Thorat, T., & Kasture, M., (2017). Effect of establishment techniques and sowing time on yield and yield attributes of proso millet (Panicum miliaceum L.). International Journal of Current Microbiology and Applied Sciences, 6(5),1523-8 .
  52. Nandini, K., & Sridhara, S. (2019). Performance of foxtail millet (Setaria italica) genotypes to sowing dates in Southern transition zone of Karnataka. Journal of Pharmacognosy and Phytochemistry, 8(1),2109-12.
  53. Radhouane, L. (2008). Autochthonous pearl millet ecotype (Pennisetum glaucum LR BR.) response to different sowing dates in Tunisia. Sjemenarstvo, 25(2),123-38 .
  54. Zhang, W., Wang, B., Liu, B., Chen, Z., Lu, G., Ge, Y., & Bai, C. (2022). Trait selection for yield improvement in foxtail millet (Setaria italica) under climate change in the North China Plain. Agronomy, 12(7),1-15 .
  55. Nurmuliana, N., & Akib, M.A. (2019). Plant growth analysis of jack been (Canavalia ensiformis) at different spacing to determine the application time of cutback technology. Agrotech Journal, 4(1),1-7 .
  56. Shah, N., & Paulsen, G. (2003). Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and Soil, 257,219-26 .
  57. Van Oosterom, E., Weltzien, E., Yadav, O., & Bidinger, F. (2006). Grain yield components of pearl millet under optimum conditions can be used to identify germplasm with adaptation to arid zones. Field Crops Research, 96(2-3),407-21
  58. Prasad, P., Djanaguiraman, M., Stewart, Z., & Ciampitti, I. (2020). Agroclimatology of maize, sorghum, and pearl millet. Agroclimatology: Linking Agriculture to Climate, 60,201-41 .
  59. Borrás, L,. Slafer, G.A., & Otegui, M.E. (2004). Seed dry weight response to source–sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Research, 86(2-3),131-46 .