اثر محلول پاشی اسید سالیسیلیک بر ویژگی های فتوسنتزی، فعالیت آنتی‌اکسیدان‌های آنزیمی و عملکرد ارقام کلزا (Brassica napus L.) در شرایط تنش گرمای آخر فصل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 دانشیار، گروه زیست‌شناسی، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

سابقه و هدف: تنش دمای بالا یک تنش محیطی اصلی است که رشد، متابولیسم و تولید گیاهان را در سراسر جهان محدود می‌کند. به نظر‌می‌رسد که در شرایط آب و هوایی آینده، مناطق گرم و مرطوب اولین مناطقی باشند که توسط تنش دمای بالا در طول دورۀ زایشی، که باعث تغییر در فرآیندهای فیزیولوژیک و بیوشیمیایی می‌شود، تحت تأ‌ثیر قرار می‌گیرند. کلزا یک گیاه دانه روغنی است که برای مصارف خوراکی و صنعتی کشت می‌شود. تأخیر در کشت باعث تسریع رشد، کوتاه شدن دورۀ رشد و عدم بهره‌وری گیاه از شرایط رشد مناسب می‌شود. اسید سالیسیلیک به عنوان یک تنظیم کنندۀ رشد گیاه، نقش عمده‌ای در رشد و نمو گیاهان ایفا می‌کند و با اثر بر واکنش‌های مختلف بیوشیمیایی و فرآیندهای فیزیولوژیک، سبب بهبود فتوسنتز تحت تنش گرما می‌شود. اسید سالیسیلیک از طریق تغییر در ویژگی‌های فتوسنتزی و فعالیت آنتی‌اکسیدان‌های آنزیمی، اثرات نامطلوب تنش گرمایی بر تولید محصول را کاهش می‌دهد. هدف از این مطالعه بررسی اثر محلول‌پاشی اسید سالیسیلیک بر عملکرد، ویژگی‌های فتوسنتزی و فعالیت آنتی‌اکسیدانی ارقام کلزا در شرایط تنش گرمای آخر فصل ناشی از کشت دیرهنگام پاییزه بود.
مواد و روش‌ها: به‌ منظور بررسی تأثیر تنش گرمای آخر فصل در مرحلة رشد زایشی بر برخی ویژگی‌های فتوسنتزی و فعالیت آنتی‌اکسیدان‌های آنزیمی کلزا، پژوهشی مزرعه‌ای به‌صورت اسپلیت فاکتوریل در قالب طرح پایۀ بلوک‌های کامل تصادفی در سه تکرار در سال زراعی 1402-1403 در دانشگاه شهید چمران اهواز اجرا شد. دو تاریخ کاشت به‌هنگام و دیرهنگام (به ترتیب 20 آبان و 20 آذر) در کرت‌های اصلی، و محلول‌پاشی غلظت‌های هورمون اسید سالیسیلیک (شاهد و 200 میکرومولار در لیتر) و ارقام کلزا (هایولا 4815، آگامکس، هایولا50 و تراپر) به‌صورت فاکتوریـل در کرت‌های فرعی قرار گرفتند. تیمار اسید سالیسیلیک در مرحلۀ ساقه‌دهی و غنچه‌دهی (به ترتیب مرحلة 32 و 53 بر اساس مقیاس BBCH) اعمال شد. داده‌های مربوط به هدایت روزنه‌ای، شاخص کلروفیل، فعالیت آنزیم کاتالاز، پراکسیداز، آسکوربات پراکسیداز، سوپراکسید دیسموتاز، گلوتاتیون ریداکتاز، غلظت پراکسید هیدروژن و مالون-دی‌آلدهید، عملکرد دانه و روغن نیز ثبت شد.
یافته‌ها: نتایج نشان داد برهم‌کنش تاریخ کاشت، محلول‌پاشی هورمون و ارقام کلزا بر بیشتر صفات معنی‌دار بود. کاشت دیرهنگام در همۀ ارقام و سطوح تنظیم‌کنندۀ رشد، سبب کاهش عملکرد دانه (28 درصد) و روغن (35 درصد)، شاخص کلروفیل (11 درصد)، هدایت روزنه‌ای (36 درصد)، افزایش فعالیت آنزیم‌های کاتالاز (26 درصد)، پراکسیداز (32 درصد)، آسکوربات پراکسیداز (76 درصد)، سوپراکسید دیسموتاز (79 درصد) و گلوتاتیون ریداکتاز (80 درصد) و همچنین غلظت پراکسید هیدروژن (35/3 برابر) و مالون‌دی‌آلدهید (33 درصد) شد. بین ارقام نیز از نظر تمامی صفات تفاوت معنی‌داری مشاهده شد. کاربرد اسید سالیسیلیک با غلظت 200 میکرومولار در لیتر سبب بهبود صفات مورد مطالعه در هر دو تاریخ کاشت شد. در تاریخ کاشت دیرهنگام و همۀ ارقام محلول-پاشی اسید سالیسیلیک در مقایسه با عدم محلول‌پاشی، باعث افزایش هدایت روزنه‌ای (15 درصد)، شاخص کلروفیل (2 درصد)، عملکرد دانه (23 درصد) و عملکرد روغن (31 درصد)، فعالیت آنزیم کاتالاز (16 درصد)، پراکسیداز (11 درصد)، آسکوربات پراکسیداز (8 درصد)، سوپراکسید دیسموتاز (10درصد) و گلوتاتیون ریداکتاز (12درصد) شد، در حالی که غلظت پراکسید هیدروژن (5 درصد) و مالون دی آلدهید (21 درصد) را کاهش داد. ارقام آگامکس و تراپر از طریق بهبود صفات ذکر شده، تحت شرایط تنش گرمای ناشی از کشت دیرهنگام عملکرد بالاتری را حفظ کردند.
نتیجه‌گیری: در این مطالعه تیمار اسید سالیسیلیک توانست اثرات منفی تنش گرما را با بهبود صفات فتوسنتزی وآنتی اکسیدانی و کاهش غلظت پراکسید هیدروژن و مالون دی آلدهید بهبود بخشد و از این رو سبب بهبود عملکرد دانه و روغن گردد. همچنین کاربرد اسید سالیسیلیک (200 میکرومولار در لیتر) می‌تواند یک راهبرد موثر در بهبود عملکرد دانه و روغن ارقام کلزا در شرایط تأخیر در کاشت پاییزه در مناطق گرمسیر مانند خوزستان باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Foliar application of salicylic acid effect on photosynthetic properties, enzymatic antioxidant activities, and yield of canola (Brassica napus L.) cultivars under terminal heat stress

نویسندگان [English]

  • Maral Dinarvandi Dinarvandi 1
  • Afrasyab Rahnama 2
  • Moosa Meskarbashee 2
  • Parzhak Zoufan 3
1 Department of Plant Production and Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Department of Plant Production and Genetics,Facilty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Background and objectives: High temperature stress is a major environmental stress that limits crop growth, metabolism, and productivity worldwide. Humid tropical areas are thought to threaten primarily by high temperature stress during reproductive phase which causes a drastic change in physiological and biochemical behavior of the major crops under future climates. Canola (Brassica napus L.) is an oilseed crop cultivated for purposes relating to household consumption and industry. Delay in sowing date are known to accelerate the crop development and shorten the growing period and distance of the plant from suitable growing conditions. Salicylic acid (SA), as a plant growth regulator, plays a major role in plant growth and development and promote photosynthesis under heat stress by influencing various biochemical reactions and physiological processes. SA in known to alleviate adverse effects of heat stress on crop production through changes in photosynthesis traits and enzymatic antioxidant activities. The aim of this study was to evaluate the effect of SA foliar on the yield, photosynthetic characteristics, and enzymatic antioxidant activities of canola cultivars under terminal heat stress caused by late autumn winter sowing dates in Ahvaz conditions.
Materials and Methods: In order to investigate the effect of SA foliar application on the yield, photosynthetic characteristics, and enzymatic antioxidant activities of canola cultivars in two sowing dates, a field experiment carried out in a split plot factorial in randomized complete block design with three replicates per treatment at the research farm of Shahid Chamran University of Ahvaz in 2023-2024 growing season. Main plots consisted of two sowing dates; November 11, and December 11 (Normal and late sowing dates, respectively), and sub plot consisted of factorial arrangement of different concentrations of SA (0, and 200 μm l-1, SA), and canola cultivars (Hyola4815, Agamax, Hyola50, and Trapper). SA treatments were implemented at stem elongation (32) and inflorescence emergence (53).
Results: Results showed that the interaction between sowing date, hormone foliar application, and cultivars significantly affected most of the traits. Heat stress in late sowing date led to a significant reduction in seed (28%) and oil yield (35%), chlorophyll index (11%), stomatal conductance (36%), but increased catalase (26%), peroxidase (32%), ascorbate peroxidase (76%), superoxide dismutase (79%), glutathione reductase (80%) enzyme activities and hydrogen peroxide (335%) and malondialdehyde (MDA) concentration (33%) compared to normal sowing date. A significant difference was found among cultivars in terms of all traits. The concentration of 200 μm l-1 SA improved the studied traits in both sowing dates. In late sowing date, foliar application of salicylic acid enhanced stomatal conductance (15%), chlorophyll index (2%), seed (23%) and oil yield (31%), catalase (16%), peroxidase (11%), ascorbate peroxidase (8%), superoxide dismutase (10%), glutathione reductase (12%) enzyme activities, but decreased hydrogen peroxide (5%) and MDA (21%), when compared to salicylic acid -deficient plants, According to these results, Agamex and Trapper cultivars perform better than other cultivars and largely maintain their high yield through improvement of the mentioned traits under heat stress conditions caused by late sowing time.
Conclusion: The adverse effects of heat stress were mitigated by the application of SA as a foliar spray. SA treatment played a crucial role in maintaining gas exchange, promoting the production of enzymatic antioxidants and reducing hydrogen peroxide and MDA concentrations. These findings provide evidence that exogenous SA (200 μm l-1) can be an effective strategy in improvement of seed and oil yield of canola cultivars under late autumn sowing date conditions in tropical regions such as Khuzestan.

کلیدواژه‌ها [English]

  • Catalase
  • Chlorophyll index
  • High temperature
  • Peroxidase
  • Stomatal conductance
  1.  Annual report. 2023. Annual harvested area, production, and yield in 2022-2023. Ministry of Agriculture Jihad. Iran

    1. Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529, 84–87.
    2. Rahnama, A., Salehi, F., Meskarbashee, M., Mehdi Khanlou, K., Ghorbanpour, M., & Harrison, M.T. (2024). High temperature perturbs physicochemical parameters and fatty acids composition of safflower (Carthamus tinctorius L.). BMC Plant Biology, 24, 1080.
    3. Hasanuzzaman, M., Nahar, K., Alam, M.M., & Fujita, M. (2013). Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum L.) seedlings by modulating the antioxidant defense and glyoxalase system. Australian Journal of Crop Science, 6, 1314-1323.
    4. Driedonks, N., Rieu, I., & Vriezen, W.H. (2016). Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reproduction, 29(1-2), 67-79.
    5. Basu, P.S., Kumar Chaturvedi, S., Mall Gaur, P., Mondal, B., Kumar Meena, S., Das, K., Kumar, V., Tewari, K., & Sharma, K. (2022). Physiological mechanisms of tolerance to drought and heat in major pulses for improving yield under stress environments. IntechOpen. In book: Plant Response Mechanisms to Abiotic Stresses.
    6. Santos, T.B., dos, Ribas, A.F., Souza, S.G. H. de, Budzinski, I.G.F., & Domingues, D.S. (2022). Physiological responses to drought, salinity, and heat stress in plants: a review. Stresses, 2, 113-135.
    7. Singh, B., &Usha, K. (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation, 39, 137-141.
    8. Miura, K., & Tada, Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 23(5), 4.
    9. Koo, Y.M., Heo, A.Y., & Choi, H.W. (2020). Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal, 36(1),1-10.
    10. Sangwan, S., Shameem, N., Yashveer, S., Tanwar, H., Parray, J.A., Jatav, H.S., Sharma, S., Punia, H., Sayyed, R.Z., Almalki, W.H., & Poczai, P. (2022). Role of Salicylic Acid in Combating Heat Stress in Plants: Insights into Modulation of Vital Processes. Front Biosci (Landmark Ed), 27(11):310.
    11. Clarke, S.M., Cristescu, S.M., Miersch, O., Harren, F.J.M., Wasternack, C., & Mur, L.A.J. (2009). Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytologist, 182(1),175-187.
    12. Wong, W.S., Tan, S.N., Ge, L., Chen, X., & Yong, J.W.H. (2015). The importance of phytohormones and microbes in biofertilizers: a critical review. In: Maheshwari DK, editor. Bacterial Metabolites in sustainable Agroecosystem. Switzerland: Springer International, p. 58-105.
    13. Boamah, S., Ojangba, T., Zhang, S., Zhu, N., Osei, R., John Tiika, R., & Xu, B. (2023). Evaluation of salicylic acid (SA) signaling pathways and molecular markers in Trichoderma-treated plants under salinity and Fusarium stresses. A Review. European Journal of Plant Pathology, 166(3), 74-259.
    14. EL Sabagh, A., Islam, M.S., Hossain, A., Iqbal, M.A., Mubeen, M., Waleed, M., Reginato, M., Battaglia, M., Ahmed, S., Rehman, A., Arif ,M., Athar, H-U-R., Ratnasekera, D., Danish, S., Raza, M.A., Rajendran, K., Mushtaq, M., Skalicky, M., Brestic, M., Soufan, W., Fahad, S., Pandey, S., Kamran, M., Datta, R., & Abdelhamid, M.T. (2023). Phytohormones as growth regulators during abiotic stress tolerance in plants. Frontiers in Agronomy, 4,765068.
    15. Wassie, M., Zhang, W., Zhang, Q., Ji, K., Cao, L., & Chen, L. (2020). Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.). Ecotoxicology and Environmental Safety, 191, 110206. 
    16. Choudhary, S., Bhat, T.M., Alwutayd, K.M., Abd El-Moneim, D., & Naaz, N. (2024). Salicylic acid enhances thermotolerance and antioxidant defense in Trigonella foenum graecum L. under heat stress. Heliyon, 11, 10(6), e27227.
    17. Chavoushi, M., Najafi, F., Salimi, A., & Angaji, S.A. (2020). Effect of salicylic acid and sodium nitroprusside on growth parameters, photosynthetic pigments and secondary metabolites of safflower under drought stress. Scientia Horticulturae, 259, 108823.
    18. Huang, W., Wang, Y., Li, X., & Zhang, Y. (2020). Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Molecular Plant, 13(1), 31-41.
    19. Yang, W., Zhou, Z., & Chu, Z. (2023). Emerging roles of salicylic acid in plant saline stress tolerance. International Journal of Molecular Sciences, 24(4), 3388.
    20. Cingoz, G.S., & Gurel, E. (2016). Effects of salicylic acid on thermotolerance and cardenolide accumulation under high temperature stress in Digitalis trojana Ivanina. Plant Physiology and Biochemistry, 105, 145-149.
    21. Pakraei, A., & Siahpoosh, M. R. (2023). Evaluation of rapeseed genotypes using heat stress tolerance indices in Ahvaz weather conditions. Iranian Journal of Field Crop Science, 54(2), 47-58. [in Persian]
    22. Morrison, M.J., McVetty, P.B.E., & Shaykewich, C.F. (1989). The determination and verification of a baseline temperature for the growth of Westar summer rape. Canadian Journal of Plant Science, 69, 455-464.
    23. Beers, R.F., & Sizer, J.W. (1952). Spectrophotometric method for measuring breakdown of hydrogen peroxide catalase. Journal of Biological Chemistry, 195, 133-140.
    24. Nakano, Y., & Asada, K. (1981). Hydrogen Peroxide Is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts. Plant and Cell Physiology, 22(7), 867-880.
    25. Ranieri, A., Castagna, A., Pacini, J., Baldan, B., Mensuali Sodi, A., & Soldatini, G.F. (2003). Early production and scavenging of hydrogen peroxide in the apoplast of sunflower plants exposed to ozone. Journal of Experimental Botany, 54(392), 2529-2540.
    26. Giannopolitis, C.N., & Ries, S.K. (1997). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59(2), 309-314.
    27. Nahar, K., Hasanuzzaman, M., Alam, M.M., & Fujita, M. (2015). Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean. Biologia Plantarum, 59(4), 745-756.
    28. Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment, 24(12), 1337-1344.
    29. Heath, R.L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198.
    30. Rahnama, A., James, R.A., Poustini, K., & Munns, R. (2010). Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology, 37(3), 255-263.
    31. Hao, L., Guo, L., Li, R., Cheng, Y., Huang, L., Zhou, H., & Zheng, Y. (2019). Responses of photosynthesis to high temperature stress associated with changes in leaf structure and biochemistry of blueberry (Vaccinium corymbosum L.). Scientia Horticulturae, 246, 251-264.
    32. Haba, P.D., Mata, D.L., Molina, E., & Agüera, E. (2014). High temperature promotes early senescence in primary leaves of sunflower (Helianthus annus L.) plants. Canadian Journal of Plant Science, 94(4), 659-669.
    33. Ilyas, M., Maqsood, M.F., Shahbaz, M., Zulfiqar, U., Ahmad, K., Naz, N., Fraz Ali, M., Ahmad, M., Ali, Q., Hong Yong, J.W., & Ali, H.M. (2024). Alleviating salinity stress in canola (Brassica napus L.) through exogenous application of salicylic acid. BMC Plant Biology, 24, 611.
    34. Nazar, R., Umar, S., Khan, N.A., & Sareer, O. (2015). Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. South African Journal of Botany, 98, 84-94.
    35. Møller, I.M., Jensen, P.E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58(2), 459-481.
    36. Baily, C. (2004). Active oxygen species and antioxidants in seed biology. Seed Science Research, 14, 93-107.
    37. Hu, Y., Ge, Y., Zhang, C., Ju, T., & Cheng, W. (2009). Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment. Plant Growth Regulation, 59(13), 51-61.
    38. Villa-Castorena, M., Ulery, A.L., Valencia, E.A.C., & Remmenga, M.D. (2003). Division S-4-soil fertility and plant nutrition. Soil Science Society of America Journal, 67(10), 1781-1789.
    39. Misra, A., & Srivastava, N.K. (2000). Influence of water stress on Japanese mint. Journal of Herbs, Spices and Medicinal Plants, 7(11), 51-58.
    40. Kürsat, Ç., & Kirdar, K. (2010). Effects of hydrogen peroxide on the germination and early seedling growth of barley under NaCl and high temperature stresses. European Asian Journal of Biology Sciences, 4(16), 70-79.
    41. Dixit, P., Mukherjee, K., Ramachandran, V., & Eapen, S. (2011). Glutathione transferase from Trichoderma vireos enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotine tabacum. Plant and Soil, 325(1-2), 198-207.
    42. Ghosh, A., Kushwaha, H.R., Hasan, M.R., Pareek, A., Sopory, S.K., & Singla-Pareek, S.L. (2016). Presence of unique glyoxalase III proteins in plants indicates the existence of a shorter route for methylglyoxal detoxification. Scientific Reports, 6(1), 1-15.
    43. Zhao, X.X., Huang, L.K., Zhang, X.Q., Li, Z., & Peng, Y. (2014). Effects of heat acclimation on photosynthesis, antioxidant enzyme activities and gene expression in Orchardgrass (Dactylis glomerata L.). Molecular Biology Reports, 41(9), 13564-13576.
    44. Mohammed, A.R., & Tarpley, L. (2010). Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. European Journal of Agronomy, 33, 117-123.
    45. Møller, I.M., Jensen, P.E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58(2), 459-481.
    46. Senaratna, T., Touchell, D., Bunn, E., & Dixon, K. (2000). Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plant. Plant Growth Regulation, 30, 157-161.
    47. Noreen, S., Ashraf, M., Hussain, M., & Jamil, A. (2009). Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pakistan Journal of Botany, 41(1), 473-479.
    48. Yun-Ying, C.A.O., Hua, D.U.A.N., Li-Nian, Y.A.N.G., Zhi-Qing, W.A.N.G., Shao-Chuan, Z.H.O.U., & Jian-Chang, Y.A.N.G. (2008). Effect of heat stress during meiosis on grain yield of rice cultivars differing in heat tolerance and its physiological mechanism. Acta Agronomica Sinica, 34(12), 2134-2142.
    49. Keshavarz, H., & Modarres Sanavy, S.A.M. (2014). Effect of salicylic acid on chlorophyll, some growth characteristics and yield of two canola cultivars. Gorgan University of Agricultural Sciences and Natural Resources, 7(4), 167-178. [in Persian]
    50. Wahid, A., Gelani, S., Ashraf, M., & Foolad, M.R. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61(3), 199-223.
    51. Blokhina, O., Virolainen, E., & Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91(2), 179-194.
    52. Chakraborty, U., & Tongden, C. (2005). Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L. Current Science, 89, 384-389.
    53. Hayat, S., & Ahmad, A. (2007). Salicylic Acid: A Plant Hormone. Springer.
    54. Sharma, P., & Dubey, R.S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation, 46(3), 209-221.
    55. Jahan, M.S., Wang, Y., Shu, S., Zhong, M., Chen, Zh., Wu, J., Sun, J., & Guo, S. (2019). Exogenous salicylic acid increases the heat tolerance in Tomato (Solanum lycopersicum L) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Scientia Horticulturae, 247(3), 421-429.
    56. El-Esawi, A.M., Elansary, H.O., El-Shanhorey, N.A., Abdel-Hamid, A.M.E., Ali, H.M., & Elshikh, M.S. (2017). Salicylic Acid-Regulated Antioxidant Mechanisms and Gene Expression Enhance Rosemary Performance under Saline Conditions. Frontiers in Physiology, 8, 1-14.
    57. Tutar, O., Marín-Guirao, L., Ruiz, J.M., & Procaccini, G. (2017). Antioxidant response to heat stress in seagrasses. A gene expression study. Marine Environmental Research, 132, 94-102.
    58. Wang, X., Cai, J., Jiang, D., Liu, F., Dai, T., & Cao, W. (2011). Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. Journal of Plant Physiology, 168(6), 585-593.
    59. Liu, J., Qiu, G., Liu, C., Li, H., Chen, X., Fu, Q., Lin, Y., & Guo, B. (2022). Salicylic acid, a multifaceted hormone, combats abiotic stresses in plant. Life, 12(6), 1-25.
    60. Rahnama, A., Salehi, F., Meskarbashee, M., Khanlou, K.M., Ghorbanpour, M., & Harrison, M.T. (2024). High temperature perturbs physicochemical parameters and fatty acids composition of safflower (Carthamus tinctorius L.). BMC Plant Biology, 24, 1080.
    61. Sheikh Mamo, B., Rahnama, A., & Hassibi, P. (2023). The influence of terminal heat stress on physiological and yield characteristics of promising sunflower cultivars in Ahvaz climate condition. Environmental Stresses in Crop Sciences, 16(3), 835-851. [in Persian]
    62. Prasad, P.V.V., Pisipati, S.R., Momčilović, I., & Ristić, Z. (2011). Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF‐Tu expression in spring wheat. Journal of Agronomy and Crop Science, 197(6), 430-441.
    63. Modarres Sanavy, S.A.M., & Keshavarz, H. (2014). Effect of salicylic acid on chlorophyll, some growth characteristics, and yield of two canola cultivars. Journal of Crop Production, 7(4), 161-171.

    64- Khajavi, M., Rahnama, A., Meskarbashee, M., Moosavi, S. A., & Tom Harrison, M. (2023). Effect of cytokinin hormone on morphological and yield traits of sunflower under terminal heat stress. Crop Physiology Journal, 14(56), 63-78. [in Persian]