بررسی اثر همزمان تنش غرقاب و شوری بر برخی صفات زراعی، عملکرد و اجزای عملکرد گندم

نوع مقاله : مقاله کامل علمی- پژوهشی

نویسندگان

1 استاد، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران،

2 دانشجوی دکتری، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران،

3 دانش‌آموخته کارشناسی‌ارشد، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران،

4 دانشیار، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران،

چکیده

سابقه و هدف: امروزه به دلیل عوامل طبیعی و انسانی، که بسیاری از آنها در نتیجه تغییرات آب و هوایی هستند، سبب وقوع شرایط غرقابی خاک، شوری و ترکیب هر دو تنش می شود. آبیاری با آب های زیرزمینی با شوری بالا، شوری و غلظت سدیم خاک را افزایش می دهد و منجر به مشکلات نفوذپذیری خاک می شود. نفوذپذیری پایین خاک و زهکشی ضعیف سبب تنش غرقابی و کاهش تولید محصول می شود، ازاین‌رو این آزمایش با هدف بررسی اثر همزمان تنش شوری و غرقابی و اثر متقابل آن‌ها بر برخی صفات زراعی، عملکرد و اجزای عملکرد، دو رقم گندم انجام شد.
مواد و روش: آزمایش به‌صورت گلدانی در دانشگاه علوم کشاورزی و منابع طبیعی گرگان و به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی در سال زراعی-1395 1394 انجام شد. تیمارهای آزمایش شامل دوره‌های مختلف غرقاب در چهار سطح (صفر، 7، 14 و 21 روز)، میزان شوری در سه سطح (صفر، 100 و 200 میلی‌مولار NaCl) و ارقام گندم (مروارید و کوهدشت) بودند. درمجموع 24 تیمار در 6 تکرار و با 10 بوته در هر گلدان کشت شد. در این آزمایش صفاتی همچون ارتفاع بوته، وزن خشک ساقه و برگ، درصد نیتروژن، تعداد سنبله در بوته، تعداد دانه در سنبله، وزن هزار دانه، عملکرد دانه، عملکرد زیستی و شاخص برداشت اندازه‌گیری شد. داده‌های آزمایش با استفاده از نرم‌افزار SAS تجزیه‌وتحلیل شد.
یافته‌ها: نتایج حاصل نشان داد تأثیر تنش شوری بر وزن خشک ساقه و برگ، ارتفاع بوته، عملکرد و اجزای عملکرد، شاخص برداشت، درصد پروتئین دانه در سطح احتمال یک درصد معنی‌دار بود. با افزایش شوری، صفات وزن خشک ساقه و برگ، ارتفاع بوته، عملکرد و اجزای عملکرد دانه، شاخص برداشت، درصد پروتئین دانه کاهش یافتند. تأثیر تنش غرقابی تنها بر وزن خشک برگ و درصد پروتئین دانه در سطح احتمال یک درصد معنی‌دار بود. میزان وزن خشک برگ در اثر تنش غرقاب کاهش یافت و این کاهش زمانی شدت گرفت که این دو تنش همزمان اعمال شدند. با افزایش تنش شوری مقدار عملکرد دانه و عملکرد زیستی گندم کاهش یافت که این میزان کاهش در رقم کوهدشت کمتر از رقم مروارید بود. همچنین نتایج همبستگی نشان داد تعداد دانه در خوشه بیشترین همبستگی را با عملکرد دانه دارد که این امر نشان‌دهنده آن است که با کاهش تعداد دانه در سنبله عملکرد دانه نیز با همان نسبت کاهش پیدا می‌کند.
نتیجه‌گیری: به‌طورکلی می‌توان بر اساس نتایج این آزمایش بیان کرد وقوع هم‌زمان تنش غرقابی و شوری به‌مراتب خسارت بیشتری را نسبت به وقوع هرکدام از تنش‌های شوری و غرقاب به‌تنهایی باعث شود، همچنین رقم کوهدشت نسبت به رقم مروارید دارای مقاومت بیشتری نسبت به تنش غرقابی و تنش شوری بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the simultaneous effect of waterlogging and salinity stress on some agricultural traits, yield and yield components of wheat

نویسندگان [English]

  • Serollah Galeshi 1
  • Mitra Toloo hafezian aval 2
  • Samereh Mohammadi shermeh 3
  • Afshin Soltani 1
  • Ebrahim Zeinali 4
1 Professor, Department of Agriculture, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran,
2 PhD Student, Department of Agriculture, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran,
3 Master's degree student, Department of Agriculture, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran,
4 Associate Professor, Department of Agriculture, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran,
چکیده [English]

Background and objectives: Today, due to natural and human factors, many of which are the result of climate change, soil flooding, salinity, and the combination of both stresses occur. Irrigation with high salinity groundwater increases soil salinity and sodium concentration and leads to soil permeability problems. Low soil permeability and poor drainage cause waterlogging stress and decrease in crop production, so this experiment aims to investigate the simultaneous effect of salinity and Flooding stress and their mutual effect on some agricultural traits, yield and yield components of two wheat varieties was done.
Materials and methods: The experiment was carried out in pots at the Gorgan University of Agricultural Sciences and Natural Resources and factorially in the form of a completely random design in the agricultural year 2015-2016. The experimental treatments included different periods of Flooding at four levels (zero, 7, 14, and 21 days), salinity levels at three levels (zero, 100, and 200 mM NaCl), and wheat cultivars (Marvarid and Kohdasht). A total of 24 treatments were cultivated in 6 replications with 10 plants in each pot. In this experiment, traits such as plant height, stem and leaf dry weight, nitrogen percentage, number of spikes per plant, number of seeds per spike, weight of 1000 seeds, seed yield, biological yield and harvest index were measured. The test data were analyzed using SAS software.
Results: The results showed that the effect of salinity stress on stem and leaf dry weight, plant height, yield and yield components, harvest index, and seed protein percentage was significant at the probability level of 1%. With the increase in salinity, the characteristics of stem and leaf dry weight, plant height, grain yield and yield components, harvest index, and seed protein percentage decreased. The effect of Flooding stress was significant only on leaf dry weight and seed protein percentage at the probability level of 1%. The amount of leaf dry weight decreased due to waterlogging stress and this decrease intensified when these two stresses were applied simultaneously. With the increase of salinity stress, the amount of grain yield and biological yield of wheat decreased, and this decrease was less in Kohdasht variety than Marvarid variety. Also, the correlation results showed that the number of seeds in the spike has the highest correlation with the grain yield, which indicates that with the decrease in the number of seeds in the spike, the seed yield also decreases with the same ratio.
Conclusion: In general, based on the results of this experiment, it can be stated that the simultaneous occurrence of Flooding and salinity stress causes much more damage than the occurrence of each salt and Flooding stress alone, and the Kohdasht variety was more resistant to Flooding and saltwater stress than the Marvarid variety.

کلیدواژه‌ها [English]

  • cultivar
  • Flooding stress
  • salinity
  • Seed yield
  • Biological yield
  1. Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Ashraful Alam, M., Syed, M.A., Hossain, J., Sarkar, S., Saha, S., Bhadra, P., Shankar, T., Bhatt, R., Chaki, A.K., Sabagh, A., & Islam, T. (2021). Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum) under the changing climate. Agronomy, 11, 241.
  2. Islam, M.R., Mia, M.B., & Islam, T. (2023). Role of abiotic stresses on photosynthesis and yield of crop plants, with special reference to wheat, Chapter11, ‏179-193.
  3. Miri Kondori, M., Mohammadi, S.A., & Bandehhagh, A. (2014). Effect of salinity on root characteristics of Sahara 3771 (tolerant) and Clipper (sensitive) barley varieties. Cereal Research4(2), 175-184. [In Persian]
  4. Zhang, J., Zhang, Y., Du, Y., Chen, S., & Tang, H. (2011). Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress. Journal of Proteome Research, 10(4), 1904-1914.
  5. Benmoussa, S., Nouairi, I., Rajhi, I., Rezgui, S., Manai, K., Taamali, W., Abbes, Z., Zribi, K., Brouquisse, R., & Mhadhbi, H. (2022). Growth Performance and Nitrogen Fixing Efficiency of Faba Bean (Vicia faba ) Genotypes in Symbiosis with Rhizobia under Combined Salinity and Hypoxia Stresses. Agronomy12(3), 606.‏
  1. Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Ashraful Alam, M., Syed, M.A., Hossain, J., Sarkar, S., Saha, S., Bhadra, P., Shankar, T., Bhatt, R., Chaki, A.K., Sabagh, A., & Islam, T. (2021). Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum) under the changing climate. Agronomy, 11, 241.
  2. Islam, M.R., Mia, M.B., & Islam, T. (2023). Role of abiotic stresses on photosynthesis and yield of crop plants, with special reference to wheat, Chapter11, ‏179-193.
  3. Miri Kondori, M., Mohammadi, S.A., & Bandehhagh, A. (2014). Effect of salinity on root characteristics of Sahara 3771 (tolerant) and Clipper (sensitive) barley varieties. Cereal Research4(2), 175-184. [In Persian]
  4. Zhang, J., Zhang, Y., Du, Y., Chen, S., & Tang, H. (2011). Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress. Journal of Proteome Research, 10(4), 1904-1914.
  5. Benmoussa, S., Nouairi, I., Rajhi, I., Rezgui, S., Manai, K., Taamali, W., Abbes, Z., Zribi, K., Brouquisse, R., & Mhadhbi, H. (2022). Growth Performance and Nitrogen Fixing Efficiency of Faba Bean (Vicia faba ) Genotypes in Symbiosis with Rhizobia under Combined Salinity and Hypoxia Stresses. Agronomy12(3), 606.‏
  6. Yasuor, H., Yermiyahu, U., & Ben-Gal, A. (2020). Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study. Agricaltural Water Management, 242, 106362.
  7. Sun, C., Gao, X., Fu, J., Zhou, J., & Wu. X. (2015). Metabolic response of maize (Zea mays) plants to combined drought and salt stress. Plant and Soil, 388, 99-117.
  8. Pirdehghan, S., Rahemi Karizaki, A., Gholamali Pouralamdari, A., & Hossein Sabouri, H. (2017). Investigating the effect of waterlogging stress in the seedling stage on yield and yield components of different wheat cultivars (Triticum aestivum). Applied Research of Plant Ecophysiology, 5(2), 1-17. [In Persian]
  9. Najafi, N., & Sarhangzadeh, E. (2012). Effect of NaCl salinity and soil waterlogging on growth characteristics of forage corn in greenhouse conditions. Journal of Science and Technology of Greenhouse Culture, 3(10), 1-14. [In Persian]
  10. Mercau, J.L., Nosetto, M.D., Bert, F., Giménez, R., & Jobbágy, E.G. (2016). Shallow groundwater dynamics in the Pampas: Climate, landscape and crop choice effects. Agricultural Water Management, 163, 159–168.
  11. Singh, A. (2012). Development and application of a water table model for the assessment of waterlogging in irrigated semi-arid regions. Water Resources Management, 26, 4435–4448.
  12. Singh, A. (2015). Soil salinization and waterlogging: A threat to environment and agricultural sustainability. Ecological Indicators, 57, 128–130.
  13. Amer, R. (2021). Spatial relationship between irrigation water salinity, waterlogging, and cropland degradation in the arid and semi-arid environments. Remote Sensing. 13(6): 1047.‏
  14. Guo, H., & Pennings, S.C. (2012). Mechanisms mediating plant distributions across estuarine landscapes in a low-latitude tidal estuary. Ecology, 93, 90–100.
  15. Isweiri, H., Qian, Y., & Davis, J.G. (2022). Interactive effects of waterlogging and salinity on perennial ryegrass and alkaligrass. International Turfgrass Society Research Journal14(1), 266-275.‏
  16. Maghsoumi Holasoo, S., & Pourakbar, L. (2014). The effects of salinity stress on the growth and some physiological parameters of wheat (Triticum aestivum) seedlings. Iranian Journal of Plant Biology,6(19), 31-42. [In Persian]
  17. Erenstein, O., Jordan Chamberlin, J., & Sonder, K. (2021). Estimating the global number and distribution of maize and wheat farms. Global Food Security, 30,100558.
  18. FAO (The Food and Agriculture Organization). (2021). World map of salt-affected soils. In: Global Symposium on Salt-Affected Soils, October 20–22, Rome, Italy.
  19. Satir, O., & Berberoglu, S. (2016). Crop yield prediction under soil salinity using satellite derived vegetation indices. Field Crops Research, 192, 134–143.
  20. Tian, L., Zhang, Y., Chen, P., Zhang, F., Li, J., Yan, F., Dong, Y., & Feng, B.I. (2021). How does the waterlogging regime affect crop yield? A global meta-analysis. Front. Plant Science, 12, 634898.
  21. Salari Nasab, S., Galeshi, S., Soltani, A., Zeinali, I., & Khadem Pir, M. (2015). Simultaneous effect of salinity and waterlogging stress on biological yield, economic yield and harvest index of a wheat variety (aestivum Triticum). Second National Congress of Development and Promotion of Agricultural Engineering and Soil Science of Iran. Association for Development and Promotion of Basic Sciences and Techniques. [In Persian]
  22. Barrett-Lennard, E.G., & Shabala, S.N. (2013). The waterlogging/salinity interaction in higher plants revisited-focusing on the hypoxiainduced disturbance to K homeostasis. Functional Plant Biology, 40, 872–882.
  23. Haddadi, B.S., Hassanpour, H., & Niknam, V. (2016). Effect of salinity and waterlogging on growth, anatomical and antioxidative responses in Mentha aquaticaActa Physiologiae Plantarum38(5),1-11.‏
  24. Schuman, G.E., Stanley, A.M., & Kunden, D. (1973). Automated total nitrogen analysis of soil and plant samples. SSSA Special Publications, 37, 480-481.‏
  25. (1999). Official Methods of Analysis. Method 988/05. CH. 4, P: 13.
  26. Huggins, D.R., & Pan, W.L. (1993). Nitrogen efficiency component analysis: an evaluation of cropping system differences in productivity. Agronomy, 85, 898-905.
  27. Negrao, S., Schmockel, S.M., & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119, 1–11.
  28. Mosleh Arani, A., Rafiei, A., Tabandeh, A., & Azimzadeh, H. (2018). Morphological and physiological responses of root and leave in gleditschia caspica to salinity stress. Iranian Journal of Plant Biology, 9(34), 1-12. [In Persian]
  29. Gholizadeh, A., Dehghania, H., & Dvorakb, J. (2014). Determination of the most effective traits on wheat yield under saline stress. Agricultural Advances, 3, 103–110.
  30. Dagar, J.C., Sharma, P.C., Sharma, D.K., & Singh, A.K. (2016). Innovative Saline Agriculture. Springer.
  31. Khadem Pir, M. (2013). Investigating the effect of waterlogging during the reproductive growth stage on some physiological, anatomical and performance characteristics of soybean. Master thesis of Gorgan University of Agricultural Sciences and Natural Resources. 125 pages. [In Persian]
  32. Afshar mohammadian, M., Ebrahimi nokandeh, S., Damsi, B., & Jamal Omidi, M. (2015). The effect of different levels of salinity on germination and growth indices of four cultivars of Arachis hypogaea Plant Research Journal (Iranian Biology Journal), 28(1), 23-33. [In Persian]
  33. Shaki, F., Ebrahimzadeh, H., & Niknam, V. (2018). The effect of interaction between salicylic acid and penconazole on physiological and biochemical responses of safflower (carthamus tinctorius L.) under salinity. Plant Research Journal (Iranian Biology Journal), 31(2), 370-382. [In Persian]
  34. Tabrizi Dooz, R., Naderi, D., Kalateh Jari, S., Asadi Gharneh, H.A., & Ghanbari Jahromi, M. (2022). Mitigation of salt stress toxicity in narcissus tazetta by foliar application of methyl jasmonate. Isfahan University of Technology - Journal of Crop Production and Processing, 12 (1), 45-58. [In Persian]
  35. Shaki, F., Ebrahimzadeh Maboud, H., & Niknam, V. (2018). Growth enhancement and salt tolerance of safflower (Carthamus tinctorius) by salicylic acid. Current Plant Biology, 13, 16-22.
  36. Rasouli, F., Galshi, S., Pirdashti, H., & Zeinali, I. (2013). Investigating the effect of waterlogging stress on yield and yield components of rapeseed (Brassica napus). Crop Production Journal, 7(2), 23-42. [In Persian]
  37. Parande, S., Zamani, G., Sayyari, M., & Ghaderi, M. (2014). Effects of silicon on the physiological, quality and quantity characteristics of common bean (Phaseolus vulgaris) under salinity stress. Iranian Journal Pulses Research,5(2), 57-70. [In Persian]
  38. Ashraf, M., & Oleary, J.W. (1999). Changes in soluble proteins in spring wheat stressed with NaCl. Plant Biology, 42, 113-117.
  39. Ashraf, M., Jaiwal, P.K., & Singh, G.A. (1997). Improvement of salt tolerance in same native pulse crops. Strtegies for improvement of salt tolerance in higher plants. Oxford and IBH publishing Co. Pvt. Ltd., New Delhi, p. 413-434.
  40. Afshinmehr, R., Alizadeh, O., Jafari Haghighi, B., & Zare, M. (2013). Evaluation the effects of different salt stress levels on some morphological and physiological traits in some soybean (Glycine Max) cultivars. Plant Ecophysiology (Arsanjan Branch), 5(14), 17-33. [In Persian]
  41. Jafari, T., Iranbakhsh, A., Kamali Aliabad, K., Daneshmand, F., & Seifati, S.E. (2022). Effect of salinity stress levels on some growth parameters, mineral ion concentration, osmolytes, non-enzymatic antioxidants and phenylalanine ammonialyase activity in three genotypes of (chenopodium quinoa willd). New Cellular and Molecular Biotechnology Journal, 12(45), 63-85. [In Persian]
  42. Putra, S.P., Santosa, S., & Salsinha, Y.C.F. (2023). Waterlogging and salinity stress affecting growth and morphological character changes of Limnocharis flava. Biodiversitas Journal of Biological Diversity24(1), 333-340.‏
  43. Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez Blanco, M.J., & Hernández, J.A. (2017). Plant responses to salt stress: Adaptative Mechanisms. Agronomy, 7(1), 1-38.
  44. Amal, A.l., Temimi, S., Al-Ghrairi, A., & Razaq, I. (2020). Effect of potassium and micronutrient fertilization on the activity of catalase and yield of wheat grown in saline conditions. Applied Science, 1, 81-87.
  45. Seyed Sharifi, R. (2011). Study of grain yield and some of physiological growth indices in maize (Zea mays) hybrids under seed biopriming with plant growth promoting rhizobacteria (PGPR). Journal of Food, Agriculture and Environment, 9(3), 393-397.
  46. Hagh Bahari, M., & Seyed Sharifi, R. (2013). Influence of seed inoculation with plant growth promoting rhizobacteria (PGPR) on yield, grain filling rate and period of wheat in different levels of soil salinity. Environmental Stresses in Crop Sciences,6(1), 65-75. [In Persian]
  47. Saddiq, M.S., Afzal, I., Basra, Sh., Iqbal, Sh., & Ashraf, M. (2020). Sodium exclusion affects seed yield and physiological traits of wheat genotypes grown under salt stress. Journal of Soil Science and Plant Nutrition, 20, 1442–1456.
  48. Khadem Pir, M., Galshi, S., Soltani, A., & Ghadrifar, F. (2014). Effect of flooding period and type of nitrogen feeding on quantitative and qualitative traits of soybean. Journal of Plant Production Research, 22(3), 78-55. [In Persian]
  49. Moradi, M., Ebrahimi, A., & Ghodrati, Gh.R. (2016). Investigating the effect of salinity stress on growth, physiological characteristics and seed yield of spring rapeseed cultivars (Brassica napus). Journal of Plant Production Sciences, 6(2), 1-12. [In Persian]
  50. Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry156, 64-77.‏
  51. Heidari, M., & Jamshidi, P. (2011). Effects of salinity and potassium application on antioxidant enzyme activities and physiological parameters in pearl millet. Agriculture Science, 10(2), 228–237.
  52. Tiwari, J.K., Munshi, A.D., Kumar, R., Pandey, R.N., Arora, A., Bhat, J.S., & Sureja, A.K. (2010). Effect of salt stress on cucumber: Na+–K+ ratio, osmolyte concentration, phenols and chlorophyll content. Acta Physiologiae Plantarum32, 103-114.‏
  53. Aazami, M. A., Maleki, M., Rasouli, F., & Gohari, G. (2023). Protective effects of chitosan based salicylic acid nanocomposite (CS-SA NCs) in grape (Vitis vinifera cv.‘Sultana’) under salinity stress. Scientific Reports13(1), 883.‏
  54. Shabaninezhad, S., Khodarahmpour, Z., & Soltani Howezeh, M. (2015). Grouping wheat cultivars (Triticum aestivum) based on morphophysiological characteristics under salinity stress conditions. Iran Seed Science and Research, 4 (4), 59-71. [In Persian]
  55. Byrt, C.S., Xu, B., Krishnan, M., Lightfoot, D.J., Athman, A., Jacobs, A.K., Watson-Haigh, N.S., Plett, D., Munns, R., Tester, M., & Gilliham, M. (2014). The Na+ transporter, TaHKT1; 5-D, limits shoot Na+ accumulation in bread wheat. The Plant Journal, 80, 516-526.
  56. Faiyue, B., Al-Azzawi, M.J., & Flowers, T.J. (2012). A new screening technique for salinity resistance in rice (Oriza sativa) seedlings using bypass flow. Plant, Cell and Environment, 35(6), 1099-1108.
  57. Munns, R., James, R.A., & Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025-1043.
  58. Zhu, M., Shabala, L., Cuin, T.A., Huang, X., Zhou, M., Munns, R., & Shabala, S. (2016). Nax loci affect SOS1-Like Na+ /H+ exchanger expression and activity in wheat. Journal of Experimental Botany, 67(3), 835-844.
  59. Morsy, S., Elbasyoni, I.S., & Baenziger, S. (2021). Saline water threshold level that maximizes grain yield production and minimizes sodium accumulation for salinity stress-sensitive and tolerant wheat cultivars. Asian Journal of Research in Crop Science6(1), 9-28.
  60. Turani, M., Galshi, S., Zaineli, E., & Ghaderi Far, F. (2013). Investigating the effect of waterlogging stress and different nitrogen feeding regimes on the antioxidant activity of soybean Glycine max The Second National Conference on Sustainable Development of Agriculture and Healthy Environment. Hamedan. [In Persian]
  61. Jamali, S.S., Barzoui, A., & Paknezhad, F. (2012). Root characteristics, sodium to potassium ratio and grain yield of seven wheat genotypes under salinity stress conditions. Journal of Science and Techniques of Greenhouse Crops, 5(20), 175-165. [In Persian]