تأثیر محلول‌پاشی نانوذرات آهن، روی و سیلیکون بر عملکرد و برخی صفات اگروفیزیولوژیک چاودار (Secale cereale L.) تحت تنش شوری

نوع مقاله : مقاله کامل علمی- پژوهشی

نویسندگان

1 دکتری، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران،

2 استاد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران،

چکیده

سابقه و هدف: در میان تنش‌های غیرزیستی، شوری یکی از مخرب‌ترین تنش‌هایی است که تولید گیاهان زراعی را در سراسر جهان به‌ویژه در مناطق خشک و نیمه‌خشک محدود می‌کند. این تنش به دلیل اثرات مخربی که بر فرآیندهای فیزیولوژیکی و بیوشیمیایی متعدد دارد، رشد و نمو گیاهان را محدود می‌کند. یکی از روش‌های مناسب برای بهبود مقاومت گیاهان در برابر تنش‌های محیطی، استفاده از نانوذرات (Fe، Zn و Si) است. استفاده از نانوذرات با محافظت از غشاها و سیستم فتوسنتزی می‌تواند عملکرد گیاهان زراعی تحت شرایط تنش را، افزایش دهد. بنابراین، هدف از این پژوهش ارزیابی اثرات محلول‌پاشی نانوذرات آهن، روی و نانوسیلیکون بر عملکرد و برخی صفات اگروفیزیولوژیک چاودار تحت تنش شوری بود.
مواد و روش‌ها: آزمایش به‌صورت فاکتوریل در قالب طرح پایه بلوک‌های کامل تصادفی در سه تکرار در گلخانه پژوهشی دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی در سال 1402 اجرا شد. فاکتورهای مورد بررسی شامل شوری در سه سطح (عدم اعمال شوری به‌عنوان شاهد و اعمال شوری‌ 70 و 140 میلی‌مولار با کلرید سدیم)، و محلول‌پاشی نانوذرات (روی، سیلیکون و آهن) در هشت سطح (محلول‌پاشی با آب به‌عنوان شاهد، محلول‌پاشی40 میلی‌گرم در لیترنانوسیلیکون، محلول‌پاشی 8/0 گرم درلیتر نانواکسیدروی، محلول-پاشی 8/0 گرم در لیتر نانواکسیدآهن، محلول‌پاشی نانوسیلیکون و روی، محلول‌پاشی نانوسیلیکون و آهن، محلول‌پاشی نانواکسیدروی و آهن، محلول ‌پاشی توأم نانوسیلیکون، روی و نانواکسید آهن) بود.
یافته‌ها: نتایج نشان داد که شوری مشارکت ذخایر ساقه و سهم فرآیند انتقال مجدد در عملکرد دانه را افزایش ولی محتوای کلروفیل کل، هدایت روزنه‌ای، عملکرد کوانتومی، شاخص سطح برگ، حجم و وزن ریشه، فتوسنتز جاری، سهم فتوسنتز جاری در عملکرد دانه و عملکرد دانه را نسبت به عدم اعمال شوری کاهش داد. درحالی که محلول‌پاشی توأم نانوذرات تحت شوری 140 میلی‌مولار، سهم فرآیند انتقال مجدد در عملکرد دانه (56 %) و سهم ذخایر ساقه در عملکرد دانه (8/57 %) را نسبت به شرایط عدم محلول‌پاشی در همین سطح از سطوح شوری کاهش داد. همچنین کاربرد توأم نانوذرات (روی، سیلیکون و آهن) در شرایط شوری 140 میلی‌مولار، محتوای کلروفیل کل (6/32 %)، هدایت روزنه‌ای (4/32 %)، عملکرد کوانتومی (2/13 %)، شاخص سطح برگ (4/31 %)، حجم و وزن ریشه (به‌ترتیب 8/13 و 2/17 %)، فتوسنتز جاری (2/62 %)، سهم فتوسنتز جاری در عملکرد دانه (19%) و عملکرد دانه (9/33 %) را نسبت به عدم کاربرد نانوذرات تحت شرایط شوری 140 میلی‌مولار افزایش داد.
نتیجه گیری: براساس نتایج این آزمایش محلول‌پاشی نانوذرات می‌تواند به‌عنوان یک عامل مؤثر برای افزایش عملکرد چاودار در شرایط شوری پیشنهاد شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of foliar application of nanoparticle of iron, zinc and silicon on yield and some agrophysiological traits of rye (Secale cereale L.) under salinity stress

نویسندگان [English]

  • Fatemeh Aghaei 1
  • Raouf ssharifi 2
1 PhD, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran,
2 Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran,
چکیده [English]

Background and objectives: Among the abiotic stresses, salinity is one of the most destructive stresses that limit crop production worldwide, especially in arid and semi-arid regions. Due to its detrimental effects on numerous physiological and biochemical processes, this stress restricts the growth and development of plants. One of the suitable methods to improve plants’ resistance to environmental stresses is the application of nanoparticles (Fe, Zn and Si). Applying NPs by protecting the membranes and photosynthetic system can increase the performance of crop plants under stress conditions. Therefore, the aim of this research was to evaluate the effects of foliar application of nanoparticles of iron, zinc and silicon on yield and some agrophysiological traits of rye under salinity stress.
Materials and methods: An experimental as factorial was conducted based on randomized complete block design with three replications at the research greenhouse of Faculty of Agriculture and Natural resources, University of Mohaghegh Ardabili in 2023. Factors experimental were included salinity at three levels (no salinity as control, salinity 70 and 140 mM by NaCl), and foliar application of nanoparticle (Zn, Fe and Si) at eight levels (foliar application with water as control, foliar application 40 mg.L-1 nano silicon, foliar application 0.8 g.L-1 nano znic oxide, foliar application 0.8 g.L-1 nano iron oxide, foliar application of nano Si-Zn oxide, nano silicon-iron oxide, nano Zn-Fe oxide, foliar application of nano Fe-Zn oxide and nano silicon).
Results: The results showed that salinity increased the contribution of dry matter remobilization from stem and air parts to grain yield, while it decreased total chlorophyll content, stomatal conductance, quantum yield, leaf area index, root weigh and volume, current photosynthesis, contribution of photosynthesis current in grain yield and grain yield compared with no salinity. However, both application of nanoparticles foliar application under salinity 140 mM decreased contribution of dry matter remobilization to grain yield (56%) and contribution of stem remobilization to grain yield (57.8%) in compared to no application of nanoparticles under the same salinity level. Also, the application of nanoparticles (Zn, Fe and Si) under salinity 140 mM increased the total chlorophyll content (32.6%), stomatal conductance (32.4%), quantum yield (13.2%), leaf area index (31.4%), root weigh and volume (13.8 and 17.2%, respectively), current photosynthesis (62.2%), contribution of photosynthesis current in grain yield (19%) and grain yield (33.9%) in compared to no application of nanoparticles under salinity 140 mM.
Conclusion: Based on the results of this experiment, foliar application of nanoparticles can be suggested as an effective factor for increasing the yield of rye under salinity conditions.

کلیدواژه‌ها [English]

  • Leaf area index
  • Quantum yield
  • Root dry weigh
  • Stomatal conductance
  • Total chlorophyll content
  1. Zhiling, L., Wenhua, D. & Fangyuan, Z. (2024). Genome-wide identification and phylogenetic and expression pattern analyses of EPF/EPFL family genes in the rye (Secale cereale). BMC Genomics, 25,532, 1-12.
  2. Food and Agriculture Organization of the United Nations. (2021). FAOSTAT Statistical Database. [Rome].
  3. Food and Agriculture Organization of the United Nations. (2018). FAOSTAT Statistical Database. [Rome].
  4. Imam, Y. (2003). Cereal crops. Shiraz University Press, Shiraz, Iran 190 pp. (In Farsi)
  5. Singh, A. (2022). Soil salinity: A global threat to sustainable development. Soil Use and Management, 38, 39–67.
  6. Abideen, Z., Koyro, H.W., Huchzermeyer, B., Ahmed, M.Z., Zulfiqar, F., Egan, T. & Khan, M.A. (2020). Phragmites karka plants adopt different strategies to regulate photosynthesis and ion flux in saline and water deficit conditions. Plant Biosyst, 155, 524–534.
  7. Nazari, G., Sedgi, M. & Narimani, H. (2022). Effect of salinity and application of humic acid, iron and silicon nanoxide on the contribution of remobilization process and current photosynthesis in wheat grain yield. Crop Physiology Journal, 14(54), 5-25. [In Persian]
  8. Narimani, H. & Seyed Sharifi, R. (2023). Effect of foliar and soil application of zinc on grain filling, yield and some physiological traits of wheat (Triticum aestivum) under salinity stress. Russian Journal of Plant Physiology, 70,133, 1-15.
  9. Maxwell, K. &Johnson, G.N. (2000). Chlorophyll fluorecence a practical guide. Journal of Expermental Botany, 51, 345. 656-668.
  10. Kheirizadeh Arough, Y., Seyed Sharifi, R. & Seyed Sharifi, R. (2016). Bio fertilizers and zinc effects on some physiological parameters of triticale under water-limitation condition. Journal of Plant Interactions, 11(1), 167-177.
  11. Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S.A., Rehman, Hu., Ashraf, I. & Sanaullah, M. (2020). Nanotechnology in agriculture: current status, challenges and future opportunities. Science of The Total Environment, 721, 137778.
  12. Rehman, A., Khan, S., Sun, F., Peng, Z., Feng, K., Wang, N., Jia, Y., Pan, Z., He, S., Wang, L., Qayyum, A., Du, X. & Li, H. (2024). Exploring the nano-wonders: unveiling the role of Nanoparticles in enhancing salinity and drought tolerance in plants. Frontiers in Plant Science, 14,1324176.
  13. Feng, Y., Kreslavski, V.D., Shmarev, A.N., Ivanov,A.A., Zharmukhamedov, S.K., Kosobryukhov, A., Yu, M., Allakhverdiev, S.I. & Shabala, S. (2022). Effects of iron oxide nanoparticles (Fe3O4) on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum). Plants, 11, 1894.
  14. Singh, P., Arif, Y., Siddiqui, H., Sami, F., Zaidi, R., Azam, A., Prave, A. & Hayat, S. (2021). Nanoparticles enhances the salinity toxicity tolerance in Linum usitatissimum by modulating the antioxidative enzymes, photosynthetic efficiency, redox status and cellular damage. Ecotoxicology and Environmental Safety, 213,112020.
  15. Saa, S., Negron, C. & Brown, P. (2018). Foliar zinc applications in prunus: from lab experience to orchard management. Scientia Horticulturae, 233, 233-237.
  16. Alloway, B.J. (2008). Zinc in soils and crop nutrition, second ed. international zinc association and international fertilizer industry association, brussels, Belgium/Paris, France.
  17. Souri, M. K. & Dehnavard, S. (2018). Tomato plant growth, leaf nutrient concentrations and fruit quality under nitrogen foliar applications. Advances in Horticultural Science, 32(1), 41-47.
  18. Adil, M., Bashir, S., Bashir, S., Aslam, Z., Ahmad, N., Younas, T., Asghar, R.M.A., Alkahtani, J., Dwiningsih, Y. & Elshikh, M.S. (2022). Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. Frontiers in Plant Science, 13,932861.
  19. Ruiz, J. M., Baghour, M. & Romero, L. (2000). Efficiency of the different genotypes of tomato in relation to foliar content of Fe and the response of some bioindicators. Journal of Plant Nutrition, 23(11-12), 1777-1786.
  20. Tawfk, M.M., Mohamed, M.H., Sadak, M.Sh. & Thalooth, A.T. (2021). Iron oxide nanoparticles efect on growth, physiological traits and nutritional contents of Moringa oleifera grown in saline environment. Bulletin of the National Research Centre, 45,177.
  21. Tripathi, D.K., Singh, S., Singh, V.P., Prasad, S.M., Chauhan, D.K. & Dubey, N.K. (2016). Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultivar and hybrid differing in arsenate tolerance. Frontiers in Environmental Science, 4,46-58.
  22. Desoky, E.S.M., Mansour, E., Yasin, M.A., El Sobky E.S.E. & Rady, M.M. (2020). Improvement of drought tolerance in five different cultivars of Vicia faba with foliar application of ascorbic acid or silicon. Span. Journal of Agricultural Research, 18, 16.
  23. Rady, M.M., Elrys, A.S., El-Maati, M.F.A. & Desoky, E.S.M. (2019). Interplaying roles of silicon and proline effectively improve salt and cadmium stress tolerance in Phaseolus vulgaris Plant Physiology and Biochemistry, 139, 558–568.
  24. Verma, K.K., Liu, X.H., Wu, K.C., Singh,  K., Song, Q.Q., Malviya, M.K., Song, X.P., Singh, P., Verma, C.I. & Li, Y.R. (2020). The impact of silicon on photosynthetic and biochemical responses of sugarcane under different soil moisture levels. Silicon, 12, 1355–1367.
  25. Shah, A.A., Yasin, N.A., Akram, K., Ahmad, A., Khan, W.U., Akram, W. & Akbar, M. (2021). Ameliorative role of Bacillus subtilis FBL-10 and silicon against lead induced stress in Solanum Plant Physiology and Biochemistry, 158, 486–496.
  26. Zaheer, M.M., Yasin, N.A., Ahmad, S.R., Khan, W.U., Ahmad, A., Ali, A. & S. U. Rehman, S.U. (2018). Amelioration of cadmium stress in gladiolus (Gladiolus grandiflora) by application of potassium and silicon. Journal of Plant Nutrition, 41, 461–476.
  27. Aghaei, F., Seyed Sharifi, R. & Farzaneh, S. (2024). Effects of inoculation with plant growth promoting rhizobacteria and nanoparticles on the dry matter transfer process and yield triticale (Triticosecale Wittmack) under irrigation regimes. Iranian Journal of Field Crops Research, 22(2), 197-210. [In Persian]
  28. Aghaei, F., Seyed Sharifi, R. & Narimani, H. (2023). Effects of foliar application of nanoparticles (zinc and silicon) and putrescine on chlorophyll fluorescence indices, dry matter remobilization and the contribution of this process in grain yield of wheat under salinity stress. Plant Process and Function, 56(12), 263-284. [In Persian]
  29. Arnon, A.N. (1967). Method of extraction of chlorophyll in the plants. Agronomy Journal, 23, 112-121.
  30. Seyed Sharifi, R. & Gholinejad, E. (2021). Evaluation of Agronomic and Morphophysiological Traits of Crops. Mohaghegh Ardabili university press. 410. [In Persian]
  31. Barnett, K.H. & Pearce, P.B. (1983). Source-sink ratio alteration and its effect on physiological parameters in maize. Crop Science, 23 (2), 101-109.
  32. Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M. & Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10(2), 277.
  33. Somaddar, U., Dey, H.C., Mim, S.K., Sarker, U.K., Uddin, M.R., Ahmed, N.U., Mostofa, M.G. & Saha, G. (2022). Assessing silicon-mediated growth performances in contrasting rice cultivars under salt stress. Plants, 11,1831.
  34. Naqve, M., Wang, X., Shahbaz, M., Mahmood, A., Bibi, S. & Fiaz, S. (2021). Alpha tocopherol-induced modulations in the morphophysiological attributes of okra under saline conditions. Frontiers in Plant Science, 12,800251.
  35. Song, X., Li, H., Song, J., Chen, W. & Shi, L. (2022). Biochar/vermicompost promotes hybrid pennisetum plant growth and soil enzyme activity in saline soils. Plant Physiology and Biochemistry, 183, 96-110.
  36. Neocleous, D. & Vasilakakis, M. (2007). Effects of NaCl stress on red raspberry (Rubus idaeus "Autumn Bliss"). Scientia Horticulturae, 112, 282-289.
  37. Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A., Ur Rehman, M.Z. & Waris, A.A. (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 214, 269–277.
  38. Jamil, M., Rehman, K., Jae lee, J., Man Kim, H.S., Kim, H. & Rha, E.S. (2007). Salinity reduced growth ps2 photochemistry and chlorophyll content in radish. Science Agriculre, 64, 111-118.
  39. Etesami, H. & Jeong, B.R. (2018). Silicon (Si): review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety, 147,881–896
  40. Hadi, H., Seyed Sharifi, R. & Namvar, A. (2016). Phytoprotectants and Abiotic Stresses. University of Urmia Publications. P.282. [In Persian]
  41. Welch, R. M. (1995). Micronutrient nutrition of plants. Critical Reviews in Plant Sciences 14, 49-82
  42. Van, Z.E., Zhang, Y. & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review Plant Biology, 71,403–433
  43. Seyed Sharifi, R. & Nazarly, H. (2013). Effects of seed priming with plant growth promoting rhizobacteria (PGPR) on grain yield, fertilizer use efficiency and dry matter remobilization of sunflower (Helianthus annus) with various levels of nitrogen fertilizer. Journal of Agricultural Science and Sustainable Production, 23, 27-45.
  44. Abdeldym, E.A., El-Mogy, M.M., Abdellateaf, H.R.L. & Atia, M.A.M. (2020). Genetic characterization, agro-morphological and physiological evaluation of grafted tomato under salinity stress conditions. Agronomy, 10,1948.
  45. Lu, Y., Li, Y., Zhang, J., Xiao, Y., Yue, Y., Duan, L., Zhang, M. & Li, Z. (2013). Over expression of arabidopsis molybdenum cofactor sulfurase gen confers drought tolerance in maize (Zea may). Plos one, 8(1), 1-12.
  46. Salehi, F., Ahmadi, A., Mirabzadeh, M. & Rafei, H.R. (2020). Evaluation of storage and remobilization of stem dry matter of three wheat cultivars under different moisture regimes in before and after flowering stages. Iranian Journal of Field Crop Science, 51(1), 35-49. [In Persian]
  47. Chattha, M.U., Amjad, T., Khan, I., Nawaz, M., Ali, M., Chattha, M.B., Ali, H.M., Ghareeb, R.Y., Abdelsalam, N.R., Azmat, S., Barbanti, L. & Hassan, M.U. (2022). Mulberry based zinc nano-particles mitigate salinity induced toxic effects and improve the grain yield and zinc bio-fortification of wheat by improving antioxidant activities, photosynthetic performance, and accumulation of osmolytes and hormones. Frontiers in Plant Science, 13,920570.